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 PREFACE 

STORM/CFD2000 — Theoretical Background is one volume of a multi-
volume documentation set.  In addition to this manual, the following 
publications are also included as part of the STORM/CFD2000 software 
package: 

§ The STORM/CFD2000 User Guide explains the basic concepts of 
setting up and running cases with CFD2000, describes in detail all 
components of the interface, and explains how to build models using the 
geometry tools. 

§ CFD2000/Fieldview for Windows User Guide describes the standard 
three-dimensional visualization tool included with the 
STORM/CFD2000 software package. 
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Chapter 1 

 

GOVERNING EQUATIONS AND 
  SOLUTION METHODS 

This chapter describes the CFD theory that forms the basis of Storm, the  3-
D Reynolds-averaged Navier-Stokes solver used in CFD2000.  Individual 
sections discuss the governing equations, the discretization technique, the 
solution algorithm, and the solver methodologies employed by Storm. 

Overall objectives are to:  

§ Provide insight into the numerical schemes so that you can 
understand the performance of the code in terms of stability and 
convergence rate 

§ Establish signposts that indicate when and how you can intervene in the 
solution process, and 

§ Illustrate how the information you provide affects the performance of 
the code and the quality of the solution. 

An understanding of the numerical implementation of Storm will help you 
achieve the ultimate objective—an accurate solution to your flow model. 
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Governing Equations 

Storm is a general purpose computer program designed to numerically solve 
the Navier-Stokes equations, which consist of conservation equations for 
mass, momentum, and energy.  In addition, it is capable of solving an 
arbitrary number of general transport equations.  The code uses a finite-
volume representation of the governing equations, whereby the continuous 
problem domain is decomposed into multiple control volumes, and the 
governing equations are applied to individual control volumes and integrated 
over the entire computational domain.  This algebraic equation set is then 
solved using general and efficient numerical methods to obtain a solution of 
the engineering system.   

In this section we present the basic equation set used by Storm.  No 
derivations are presented; for these, the reader may refer to any standard 
work such as Landau and Lifshitz (1959).  We start by presenting the 
differential equations that express the conservation of mass, momentum, and 
energy within a fluid volume.  These equations are intended to be applied to 
a single-phase fluid—i.e., one that is either entirely gaseous or entirely 
liquid.  Interactions between the fluid and any suspended particulate 
material of a different phase are accounted for through source terms that 
appear in each of the equations. 
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Conservation of Mass  

The conservation of mass within a small, fixed fluid volume is expressed 

 
( )

p,m
i

i S
x
u

t
=

∂
ρ∂

+
∂
ρ∂

 (1) 

where ρ is the local fluid density, t is time; xi is the position vector in the ith-
coordinate direction, ui is the ith-fluid velocity component; and Sm,p 

represents the rate per unit volume at which mass is transferred to the fluid 
by any of a number of sources—for example, evaporation of particulates.  
By default, Sm,p is set to zero (deactivated) unless the user explicitly 
activates one of the Storm source term models. 

Conservation of Momentum  

Newton’s second law applied to the fluid passing through a small, fixed 
volume leads to the following expression 
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where Bi represents the component of the total body force per unit volume 
(e.g., gravity) exerted on the fluid in the ith-coordinate direction; p is the 
local thermodynamic pressure; Sui,p is the momentum source/sink term; and 

τij is the viscous stress tensor given by  
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Here µ is the dynamic viscosity of the fluid due to laminar (molecular) 
diffusion, and δij is the Kronecker delta function (δij = 1 if i = j; δij = 0 if  i ≠ 

j).  Techniques used by Storm to model µ are discussed in Chapter 2, pages 
30-38. 
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Implicit in Eq. (3) is the conventional assumption of a linear relationship 
between the tangential stress and the rate-of-strain tensor (Stoke’s 
hypothesis).  Storm further assumes that the so-called bulk viscosity (or 
“second viscosity”) is negligibly small—an appropriate simplification for 
nearly all gaseous flows, and most low density liquids (Landau and Lifshitz, 
1959). 

Conservation of Energy 

The first law of thermodynamics applied to the fluid passing through a 
small, fixed volume leads to the following conservation equation 
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where H is the local density-weighted mean static fluid enthalpy; Φ is the 
Stokes molecular dissipation function defined as 

  
x
u

 
x
u

3
2

x

u

x
u

j

i
ij

k

k

i

j

j

i

∂
∂












δ

∂
∂

µ−










∂

∂
+

∂
∂

µ=Φ ; (5) 

Q is the rate per unit volume at which heat is added to the fluid; κ is the 
thermal conductivity; Cp is the mass-weighted mean specific heat at constant 
pressure; and SH,p is the enthalpy source/sink term. 

For multi-component fluids, Storm assumes that the enthalpy H represents 
the sum of the enthalpies of each individual component.  Thus, in general, 

  HYH
N
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where N is the total number of fluid components in the mixture, Yn is the 
density-weighted mean mass fraction of the nth species, and Hn is the local 
component enthalpy as defined by the expression 
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where Cp,n is the specific heat at constant pressure for component n; Hn,0 is 
a prescribed reference enthalpy valid at temperature T0; and T is the local 
fluid temperature. 

Conservation of Species Mass Fraction 

The conservation of mass fraction Yn for component n of an N-component 
fluid mixture is expressed 
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where Dn and Dn,T are the species mass diffusivities (SI units: kg/m/s) for 
component n due to laminar and turbulent motions, respectively; SYn,p is the 
mass source of species n due, for example, to evaporation from the 
particulate phase (inactive by default) or chemical reactions within the flow. 

Conservation of Turbulence Quantities 

The conservation equations for turbulent kinetic energy k (SI unit: m2/s2) 
and the turbulent kinetic energy dissipation rate ε (m2/s3) are, respectively:  
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and 
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where C1 and C2 are dimensionless model constants; Prk and Pre are the 
turbulent Prandtl numbers for kinetic energy and dissipation, respectively; 
Sk,p and Se,p are source terms for the kinetic energy and turbulent 
dissipation; and  
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is the turbulent production rate (SI unit: s-2). Values for the various 
dimensionless constants used in Eqs. (9) and (10) are discussed in Chapter 
2, pages 44-46. 

Equations of State (Density Models) 

The equation of state closes the system of dynamical equations by relating 
the fluid density to the other thermodynamic variables.  The various options 
available to define density are discussed in Chapter 2, pages 27-30. 

General Conservation Equation 

The conservation equations presented above constitute the basic set of 
partial differential equations solved by Storm.  In principle, each of these 
equations could be coded separately in discretized form and solved 
individually to produce a solution.  However, careful observation reveals 
that these equations all have a similar form, indicating that each dependent 
variable solved by Storm obeys the same generalized conservation principle.  
In particular, if we let φ denote the dependent variable, it turns out that all 
of the governing equations can be reduced to a single convective-diffusive 
conservation equation of the form 
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where Γφ is the effective diffusion coefficient for quantity φ; Sφ is the net 
source term; the two terms on the left-hand side are, respectively, the local 
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rate of change of quantity φ (the time term) and the convection term; and the 
first term on the right is the diffusion term. 

Storm exploits the common structure of the governing equations by coding 
only one conservation equation, Eq. (12), and then deriving solutions for all 
the dependent variables from it.  Consequently, Eq. (12) takes the form of a 
vector equation with 
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for the dependent variable vector, the effective diffusion vectors, and the 
source term vector.  Here the first element in each vector corresponds to the 
continuity equation as given by Eq. (1); the second, third, and fourth 
elements correspond to the three components of the momentum equation; the 
fifth element corresponds to the energy equation; the sixth element 
corresponds to the species mass fraction equation; the seventh element 
corresponds to the turbulent kinetic energy equation; and the eighth element 
corresponds to the turbulent kinetic energy dissipation rate equation.  Note 
that when written in this format, the source vector includes all terms in the 
governing equations that cannot be represented as contributing to either 
convection or diffusion. 
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Control Volume Formulation 

The finite-volume discretization employed by Storm uses an integral form of 
the general conservation equation Eq. (12).  This involves dividing the entire 
computational domain into a series of small, elementary control volumes 
(cells) over which the integration is carried out.  Curvilinear coordinates 
(either orthogonal or body-fitted) can be used to define the cells. 

General Transport Equation 

As stated previously, for a general variable φ the transport equation can be 
written as 
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where Γφ  is the effective diffusion coefficient and Sφ is the source term.  The 
four terms in this transport equation (as indicated above) will be referred to 
in subsequent sections as the Transient term (T), the Convection term (C), 
the Diffusion term (D), and the Source term (S). 

Coordinate System 

All the previous sections have considered the conservation equations to be 
written for a Cartesian coordinate system. To simulate three-dimensional 
flows interacting with complicated real-life geometric surfaces, these 
equations are usually transformed from the Cartesian system (x, y, z) to a 
generalized non-orthogonal curvilinear coordinate system (ξ, η, ζ).  This 
coordinate system defines the computational plane and is usually referred to 
as the body-fitted coordinate (BFC) system.  The transformation makes it 
possible to solve the governing equations on a uniformly spaced grid in the 
computational plane, even though the physical grid is curvilinear in nature.   
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CFD2000 offers the capability to solve the governing equations in both 
Cartesian and body-fitted coordinate systems.  

Cell Face Nomenclature 

Storm requires that every cell comprising the computational domain be 
hexahedral—i.e., a six-sided, plane-faced volume.  A schematic 
representation of such a cell is shown in Fig. 1.1 below. By convention, 
each face is labeled according to a right-handed “geographical” scheme in 
which the “east” face (labeled “e” in Fig. 1.1) is assumed to lie in the 
general direction of the principal coordinate axis (usually the X-axis) 
relative to the cell center; the “north” face (n) is assumed to lie in the Y-axis 
direction; and the “high” face (h) lies above the cell center in the Z-axis 
direction.  Faces labeled w, s, and l (for “west,” “south,” and “low,” 
respectively) are defined relative to these, and the point at the geometric 
center of the cell is labeled P.   The centers of the neighboring cells 
surrounding cell P are likewise labeled N, S, E, W, H, and L, as indicated in 
Fig. 1.1. 

 

 

 

 

 

 

 

 

 

Figure 1.1   Numerical stencil in Storm. 
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Discretization of the Transport Equation 

The governing equation is discretized following the procedure described in 
Patankar, 1980.  Essentially, this consists of integrating the governing 
equation over the control volume shown in Figure 1.1 (previous page).  The 
volume integrals are converted to surface integrals for the control volume 
using Green’s theorem; the individual fluxes at the faces of each cell are 
then estimated using appropriate interpolation practices. 

Integrating over the volume v of an individual cell and applying Green’s 
theorem, the integral forms of the individual terms in Eq. (12) become 

Transient Term: ( ) tVdV
t

T oldnew

v

∆φ−φ=
∂
φ∂

= ∫∫∫   (15) 

Convection Term: ( )( ) ( ) ∑∫∫∫∫∫ φρ=φρ=φρ∇=
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AVdAVdVVC
vvv

 (16) 

Diffusion Term: ( )( ) ( ) ( )∑∫∫∫∫∫ φ∇Γ=φ∇Γ=φ∇Γ∇=
AllFacesAV

AdAdVD  (17) 

Source Term: ( )φ−φ== φφ∫∫∫ o
V

VCdVSS  (18) 

where φold, φnew refer to the value of an arbitrary quantity at two time 
levels; V is the velocity vector; V is the cell volume; dA is the differential 
area of a call face; Cφ is a source linearization coefficient; and φο is a 
constant. 
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Interface Fluxes 

As is evident from the previous section, the convection and diffusion flux 
for each variable at the cell face has to be estimated based on the values of 
the variable at the neighboring cell center.  A number of practices are 
available to interpolate for the interfacial fluxes. 

Convection Flux 

The convective contribution to the local rate of change of quantity φ within 
the control volume illustrated in Fig. 1.1 can be expressed 

 eehhssnnwwee GGGGGGC φ−φ+φ−φ+φ−φ=  (19) 

where, for example, 
 eeee AuG ρ=  (20) 

denotes the mass flux of fluid crossing the east cell face; Ae is the face area; 

ρe and φe are, respectively, the density and the scalar variable value defined 
at the geometric center of the face; and ue is the magnitude of the velocity 

field oriented perpendicular to the cell face (the contravariant velocity).  
Similar definitions apply to quantities defined at the west, north, south, high, 
and low faces as well.   

Storm offers a selection of schemes for formulation of the convection 
contribution to the coefficients in the finite-volume equations.  The schemes 
described briefly include: 

§ Hybrid Scheme 

§ First-Order Upwind Scheme 

§ Higher-Order Upwind Schemes 
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Hybrid Scheme 

The hybrid scheme (Spalding, 1972) compares the relative magnitudes of 
convective and diffusive transport at each cell face to determine whether the 
neighboring cell is effectively downstream or upstream.  The Peclet number 
(the ratio of diffusive to convective time scales) is then used to determine the 
coefficient that represents a reasonable approximation to the exact solution 
of a local, one-dimensional, convection-diffusion flow. 

Under this approach, the coefficient for the east neighbor (for example) is 
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where Ce is the convective contribution at the east face, defined by Eq. (19), 
and De  is the diffusive contribution at the east face, defined 
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where (δx)e denotes the distance between the cell center and the center of the 
neighboring “east” cell.   

The hybrid scheme is most useful for low-speed flows in which diffusive 
effects are important.  More detailed information about this scheme can be 
found in Patankar (1980). 
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First-Order Upwind Scheme 

The first-order scheme (Courant, Isaacson, and Rees, 1952) is based upon 
the assumption that the convected property value at the cell face is that 
prevailing within the cell on the upwind side. Its stability makes it a 
desirable choice whenever convection effects fully dominate diffusion effects 
(i.e., for high Peclet numbers).  For example, the east neighbor coefficient is 
calculated as 

 ( ) eee D0,CMaxG +−=  (23) 

where Ce and De are defined as in the hybrid scheme. 

The first-order scheme offers the advantage of being simple and efficient.  
Of all the schemes included in Storm to compute convective fluxes, the first-
order upwind scheme uses the fewest computational resources. 

Second- and Third-Order Upwind Schemes 

In order to reduce the numerical diffusion associated with the first-order 
upwind scheme, several higher order schemes have been developed.  Storm 
offers two: a second-order upwind scheme, and a third-order upwind 
scheme. 

For both higher-order upwind schemes, central differencing is used for the 
diffusion term. The main difference is in the convection term treatment. 
Unlike the first-order upwind scheme, which uses only one upstream cell 
value, higher-order schemes use more points to construct the convection flux 
as follows: 
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 (24) 

where dfe
+, dfe

 , dfw
+, and dfee are the “limited slopes” on the w, e and ee 

faces, and n is a parameter that determines the order of the scheme.  In 
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particular, if h = -1, this scheme is second order; if h = 1/3, the scheme is 
third order. 

For both second- and third-order schemes, extra cells (such as ee in Eq. 24) 
are brought into the discretized equations, and a “minmod” filler is used to 
suppress unwanted oscillations (Yee, 1989).  To maintain the same band-
width as that of the first-order scheme, the “limited slopes” are treated 
explicitly and are combined with the rest of the source terms in the 
corresponding equations. 

Diffusion Flux 

The transport coefficient information required for evaluation of the diffusion 
fluxes is stored at the center of the computational cells.  However, diffusion 
fluxes are required at the cell faces, therefore interpolation is required to 
evaluate the transport coefficient at those locations. 

Storm offers two interpolation options: the arithmetic mean and the 
harmonic mean. 

Arithmetic Mean 

This option employs a straightforward linear interpolation of cell-center 
values to estimate the effective diffusivities at the cell faces.  The transport 
coefficient at the east cell face e, for example, is obtained from the values 
prevailing at cell center points P and E as follows: 

 ( ) EePee f1f Γ−+Γ=Γ , (25) 

where fe is a linear interpolation factor. Similar expressions are coded for 
the evaluation of the transport coefficient at the other cell faces. 

The arithmetic mean should be used whenever the spatial variations of the 
transport coefficient are known to be smooth.  Although similar results 
would be obtained using the harmonic mean (described below) in these 
situations, the arithmetic mean is preferred due to its simplicity and 
computational efficiency. 
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Harmonic Mean 

The second interpolation option evaluates the transport coefficient at the 
east face as 
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This option should be used whenever the transport coefficient exhibits 
abrupt spatial variations in the domain.  This interpolation scheme is 
somewhat more computationally expensive, but necessary to ensure the 
correct evaluation of the diffusion fluxes in highly non-uniform flows. 
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Pressure-Velocity Collocation 

Storm uses a collocated grid arrangement, in which all velocity components 
are stored at the centers of each computational cell.  Compared to staggered 
grid schemes, in which flow velocity components are stored at the faces of 
each cell, this approach results in a considerable savings in computational 
memory requirements.  For example, in a three-dimensional problem, a 
staggered grid scheme requires that the model must store geometric 
information for four sets of control volumes—one main set for the cell-center 
values, and one for each of the three velocity components. Collocated grids, on 
the other hand, required only one set, since all variables are carried at cell 
center. 

However, this memory-saving does have its drawbacks.  Primary among these 
is the tendency for the pressure and velocity fields in adjacent cells to become 
decoupled when using collocated schemes (Patankar, 1980).  This results in a 
so-called “checkerboard” instability, which over time can spoil your solution. 

To alleviate the possibility of "checkerboarding" while still retaining the 
advantages of the collocated scheme, Storm uses an approach similar to that 
introduced by Rhie and Chow (1983), and subsequently refined by Peric et al. 
(1988) and Chen et al. (1991).  This approach, generally referred to as the 
Rhie-Chow method, employs a specialized formula for computing the cell-face 
(contravariant) velocity components.  This formula corrects the usual “2∆ξ” 
interpolated pressure gradient term based on cell-center pressures with a 1∆ξ 
centered-difference form based on the pressures in adjacent cells.  For the 
east-face velocity, the effective formula is 

where ue is the east-face velocity in the ξ-coordinate direction, A is a 
coefficient that depends on the local fluid state and the grid geometry, and the 
overbars indicate linear interpolation between the E and P cell centers.  This 
procedure produces a strong pressure-velocity coupling and effectively 
suppresses the checkerboard instability. 

(27) 
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PISO Solution Algorithm 

Storm uses the PISO (Pressure Implicit with Splitting of Operators) 
algorithm developed by Issa (1985) and Issa et al. (1991) to solve the 
coupled system of governing equations.  This method, part of a general class 
of implicit pressure-based solution techniques, employs a series of 
sequential operations at each time step in which the discretized momentum 
and pressure-based continuity equations are solved in an alternating 
“predictor-corrector” fashion.  This approach offers a firm advantage over 
many other schemes (most notably, the SIMPLE method [Patankar and 
Spalding, 1972] and related schemes), in that it achieves a mass- and 
momentum-balanced, time-accurate solution for the velocity and pressure 
fields in just a few “passes” per time step, without resorting to either 
iterative and block-solution techniques.   

As implemented in Storm, the PISO scheme is carried out in six steps.  
These are described as follows. 

Step 1—First predictor step for momentum 

Starting with the u, v, and w velocity components and the pressure field p 
from the previous time step (or, if the solution is just starting, from the 
initial conditions), advance the discretized explicit form of the momentum 
equation one time increment ∆t.  Then, using the predicted velocity 
components u*, v*, and w*, advance the energy and species concentration 
equations one time step as well, if necessary. 

Step 2—First predictor step for pressure 

The velocity field obtained in the first step will not, in general, satisfy the 
requirement of mass continuity. Therefore, using the Poisson (elliptic) 
equation for pressure derived by combining the momentum and continuity 
equations, predict a pressure field p* that is mass-consistent with u*, v*, 
and w* everywhere in the domain. Use this pressure and the updated 
temperature T* derived in Step 1 to update the density as well, if necessary 
(compressible flow), using whatever equation of state has been selected.  
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Step 3—First corrector step for momentum 

Use the predicted pressure p* and the density ρ* obtained in Step 2 in the 
discretized momentum equation to obtain a set of corrected velocity 
components u**, v**, and w**.  Then use these corrected fields to update 
the energy and species conservation fields, if necessary. 

Step 4—First corrector step for pressure 

Solve the elliptic pressure equation using u**, v**, and w** once more to 
obtain a corrected mass-balanced pressure field p**.  Update the density as 
well, if necessary, using the same technique as in Step 2. 

Step 5—Second corrector step for momentum 

Use the corrected u**, v**, and w** fields obtained in Step 3, together with 
the corrected pressure p** from Step 4 in the momentum equation to arrive 
at the final velocity field u***, v***, and w***.  Also, if the energy and 
species concentration equations are being solved, use u***, v***, and w*** 
to update these fields as well.   

Step 6—Advance to the next time step 

At this point, the velocity components u***, v***, and w***, and the 
pressure field p** simultaneously satisfy both the mass and momentum 
balance requirements.  Therefore, advance the time step ∆t one increment, 
assign the final fields u***, v***, w*** and p** to the previous (old) time 
step level, and repeat the entire process from the beginning (Step 1).   



Governing Equations and Solution Methods 

19 

Linear Equation Solvers 

Finite-volume discretization of the governing equations produces a set of 
algebraic equations.  For a 3-D problem, the size of this system can be quite 
large.  However, because the computational stencil is limited to the cells 
surrounding a given cell, most of the entries in the system are zero, yielding 
a sparse matrix. 

Strictly speaking, the algebraic equations are not linear in nature, because 
the coefficients themselves are functions of the dependent variables (for 
example, the velocity components appear in the convective contributions to 
the coefficients). The algebraic equations are linearized by “freezing” the 
coefficients in order to permit the use of linear equation solvers. 

Numerous algorithms have been developed for linear sparse systems.  They 
are essentially divided into two categories: 

§ Direct methods, and 

§ Iterative methods. 

Each approach has advantages and disadvantages, and for every problem 
there is an optimum choice.  Storm offers a direct solver algorithm and two 
iterative solver algorithms: the Alternate Directions Implicit (ADI) method 
and the Incomplete Lower-Upper (ILU) decomposition method. 

This section briefly describes each of the methods available. 
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Direct Method 

The direct linear equation solution method solves the linearized system of 
equations, which in matrix notation can be represented as AX = B. 

To accomplish this goal, the matrix A is first arranged into a banded format 
with the bandwidth chosen to minimize the storage and computer execution 
time required.  For example, in a two-dimensional problem with dimensions 
idm by jdm, the equations would be ordered:  

§ In columns when idm is smaller than jdm 

§ By rows when idm is greater than jdm. 

Next, the matrix A is expressed by way of a lower-upper decomposition 
such that A = LU. 

The solution of AX = B then reduces to a forward elimination, LY = B, and 
a backward substitution, UX = Y. 

An important consideration in this approach is the fact that for two different 
systems of equations, the same LU decomposition can be applied as long as 
the matrix of coefficients A remains unchanged, even if matrix B is 
different; thus LU need not be recalculated, thereby saving computer time.  
This advantage is exploited intensively in Storm whenever possible.  For 
example, the same LU decomposition applies to both (first and second) 
pressure corrector steps. 

The direct method is very efficient for small bandwidth matrices. It is 
therefore recommended for most one- and two-dimensional problems.  It is 
also recommended for three-dimensional problems that have small values 
for any two of the three dimensions (for example, 5 x 5 x 100).  For full 
three-dimensional problems, however, the storage and the computational 
costs associated with the direct method tend to be prohibitive and its use is 
not recommended. 
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Alternating Direction Implicit Method 

The Alternating Direction Implicit (ADI) method is a semi-iterative method 
in which the equations are solved at each step by maintaining full 
implicitness in one direction at a time, while relaxing the requirement in the 
other two directions (Peaceman and Rachford, 1955; Douglas, 1955). For 
each direction a tri-diagonal linear system results that can be solved very 
efficiently.  This method is recommended for all equations solved by Storm 
except for the pressure equation used in the PISO solution algorithm.  This 
limitation arises from the observation that ADI methods often perform 
poorly for ill-conditioned elliptic systems like that produced by the pressure 
equation (see, for example, Anderson et al., 1984, pp.136-37). 

Incomplete LU Factorization Method 

The incomplete factorization method (also called the incomplete LU 
decomposition) attempts to follow the LU decomposition of the direct 
solver, while maintaining the sparseness of the L and U matrices to save 
storage (Meijerruk and van der Vorst, 1981).   Thus, A is again decomposed 
as LU, but only the non-zero locations in A are retained in L and U, making 
the decomposition “incomplete” or “approximate.” 

For instance, in a two-dimensional situation with a five-point stencil, the 
matrix A is given by 

 ( ) 1,1,,1,1,, −+−+ ++++= jiSjiNjiwjiEjipji uauauauauaAu  (28) 

In this case, the L and U operators are given by 

     ( ) 1,,1,, −− ++= jiSjiWjipji ubububLu  (29) 

 ( ) 1,,1,, ++ ++= jiNjiEjiji ucucuUu  (30) 

This method is recommended for solution of the pressure equation for full 
three-dimensional cases. It typically performs better than ADI because of its 
greater simultaneous implicitness in all three directions. 
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Time Step Treatment 

Storm uses a time-marching algorithm to obtain a solution.  The size of the 
time step used to advance the calculation is therefore of paramount 
importance for the stability and convergence characteristics of the code.  In 
this section, the mathematical consequences of user-entered data are 
discussed. 

Stability Consideration 

The Strength of Convection Effects 

The governing equations of unsteady fluid flow are a mixed set of 
hyperbolic-parabolic equations.  The inviscid part of the equations is 
hyperbolic, and the time-step size is usually characterized by the 
nondimensional Courant-Friedrichs-Lewy (CFL) number, which specifies 
the propagation of disturbances in the flow field.   The CFL number is 
defined 
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where Uc is the local velocity in each cell, ∆t  is the time step, and ∆x is the 
cell size.  As a result, for a user-specified CFL number, a time step size is 
associated with each cell in the domain, defined 
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Note that ∆tCFL is inversely proportional to the flow speed and directly 
proportional to the cell size.  For one-dimensional flows, CFL = 1 is usually 
an appropriate choice, whereas for two-dimensional flows, a somewhat 
smaller value (for example, CFL = 1/√2 = 0.707) may be required. 



Governing Equations and Solution Methods 

23 

Diffusion Effects 

The steady-state governing equations are elliptic in the viscous region, and 
the stability of the scheme is dictated by the nondimensional Von Neumann 
Number (VNN).   In Storm, this criterion is also used to characterize the 
time scale of the viscous part of the unsteady equations.  

The Von Neumann Number is defined 
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where Γ is the effective diffusivity (SI unit: kg/m/s) and ρ is the density.  
Thus, the time step size based on this criterion is defined 
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Thus, ∆tVNN is directly proportional to the square of the local cell size, and 
inversely proportional to the effective diffusivity. 

Time Step Control 

To control the size of the time step to be used during the course of the 
calculation, you can choose from three basic options: fixed time step size, 
automatic time step size, and local time step size. 

Fixed Time Step Size 

With this option, you can define a single time step value for the entire 
calculation, or a set of predetermined values that are applied at intervals that 
you specify.  Select this option if you know in advance the time-step values 
that will meet the stability and convergence requirements of the flow 
situation under study. 
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Automatic Time Step Size 

With this option you instruct Storm to determine time step values as the 
solution progresses.  Storm takes into consideration the local characteristics 
of the flow to determine the adequate size of the time step according to 
stability criteria that you specify.  In determining the optimum size of the 
time step, the code takes into account the following factors: 

§ Growth Rate 

As a built-in safety measure, the time step size growth from one time step to 
the next one is not allowed to exceed 3 per cent. Thus, the new time step 
size according to this consideration is defined as 

 oldgrowth tt ∆=∆ 03.1  (35) 

§ Upper Limit 

There is also a user-specified maximum time step size that Storm observes 
in determining the size of the next time step to be adopted.  At each cycle, 
the size for the next time step is set to 

 ( )usergrowthVNNCFLnew ttttMint ∆∆∆∆=∆ ,,,  (36) 

§ Time Step Factor 

A time factor is used to advance the solution of one variable at a different 
rate than the one dictated by the time step size described before.  Thus, by 
using numbers less than one but greater than zero, you can slow down the 
convergence rate of a given group.  On the other hand, using factors greater 
than unity will work as a convergence accelerator within the limits of 
stability and convergence of the flow. 

Because these factors are applied to the true transient term of the 
conservation equations, they represent a fictitious and hence false time-
advancing device. Thus, although the final solution should be independent of 
these settings, their use may prevent arriving at a time-accurate solution.  In 
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other words, these factors should be used mainly for time-independent 
solutions where time accuracy is not essential. 

Although time-accurate solutions are possible for special cases—with 
careful interpretation—the user should be very cautious when using this 
technique in attempting time-accurate calculations. 

Local Time Step Size 

The local time step option is similar to the automatic option, except that 
rather than using the same ∆t for all cells in the domain, ∆t is allowed to 
vary on a cell-by-cell basis, based on the local CFL or Von Neumann 
criterion.  The local time-step option can yield faster convergence rates for 
steady-state flows as each cell will be driven towards steady-state with its 
maximum allowable time step.  This option should be used only when time 
accuracy of the flow solution is not of importance. 
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Chapter 2 

 

 PROPERTY AND PHYSICAL MODELS 

Storm can simulate a wide variety of gases and liquids, as well as their 
thermal interactions with many solids.  These materials are distinguished 
from one another by several parameters that characterize their distinctive 
properties.  These include (for fluids) the density ρ, laminar viscosity µ, the 
specific heat Cp, the thermal conductivity κ (heat transfer option specified), 
and the thermal expansion coefficient β (incompressible fluid option 
specified).  The methodologies available in Storm for modeling each of these 
quantities are discussed below. 

Density 

CFD2000 offers a number of choices to model the density, which may either 
be specified as a constant value, or prescribed as a function of temperature 
and pressure, or determined through the use of a custom model. The options 
available in CFD2000 are detailed below. 

Constant Density 

The constant density model may be used for flows where the density is 
invariant or has very small spatial variations—such as liquids and low-
speed, isentropic gas flows.  This effectively decouples the density and 
pressure fields, allowing Storm to attain faster convergence. 
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Ideal Gas Law 

The ideal gas law may be used for gas flows where the heat transfer option 
has been chosen.  The ideal gas equation is 
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where Tref and pref define a reference thermodynamic state and RGAS = 
R*/mGAS is the specific gas constant, where R* = 8.314 J/K/mole is the 
universal gas constant and mGAS is the gas molecular weight (kg).  The ideal 
gas law couples the temperature and velocity fields through the density 
variable.  Note that this option is only available when the heat transfer 
option has been activated in the model. 

Isentropic Gas Law 

The isentropic gas law may be used when the system is adiabatic (no heat 
transfer) but density is a function of pressure.  In this case, density is 
modeled 

 
γ

ρρ

/1











 +
=

absp
refpp

abs
 (38) 

where γ is the mass-weighted ratio of specific heats (Cp/Cv) at the reference 

pressure and temperature, and ρabs, pabs are the absolute density and 
pressure for the basic thermodynamic state of the system.  

Field Value 

When the homogeneous gas phase is a mixture of various gaseous species, 
as in chemically reacting or multi-species flows, it is necessary to compute 
an effective molecular weight for the homogeneous phase before applying 
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the ideal gas law.  The Field Value option automatically computes the 
effective molecular weight as 

 ∑
=

=
N

i iM
iX

effM 1

1  (39) 

where Xi and Mi are the mass fraction and molecular weight of the ith 
species, respectively.  From the effective molecular weight, density is 
estimated using the ideal gas law as 

 
RT

peffM
=ρ  (40) 

Customized Density Models 

In addition to the above-mentioned options available for density, Storm also 
allows the user to define customized models for density.  Three options are 
available from the CFD2000 interface: 

§ Linear Function 

Density can be described as a linear function of any Storm scalar variable 

 ba += φρ   (41) 

where a and b are user-defined constants and φ is the dependent variable.   

§ Inverse Function 

This option allows the user to define density as an inverse function of a 
Storm scalar variable 
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where A, B and C are user-defined constants and φ is the dependent 
variable.   
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§ General User-Defined Model 

You can also define density as an arbitrary user-defined function 

 ( ) nitif ...,1;,, == xφρ  (43) 

where φi is any dependent variable, x denotes the physical space coordinate, 
and t is time. 

The user-defined model can be particularly useful, for example, in situations 
where the ideal gas law is not valid, such as in high-pressure gas flows.  In 
such cases a second-order virial equation of state of the form 
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might be more appropriate, where a and b are fluid-specific coefficients that 
can be specified directly from the CFD2000 interface.  
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Viscosity 

The laminar viscosity coefficient controls the rate at which momentum is 
redistributed within the fluid due to molecular (i.e., diffusive) motions.  It is 
an intrinsic fluid property whose value specifies the correlation between the 
applied tangential stress τij on the fluid and the resulting rate of shear 
(deformation) &Γ . 

Newtonian Model 

For gases and most pure liquids, the relationship between tangential stress 
and shear strain is linear, as expressed by Newton’s law of viscosity 

 Γ== &µττ jiij  (45) 

where the molecular viscosity µ is a function of only the thermodynamic 
state of the fluid (e.g., p and T), and  
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∂
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is the rate of shearing strain (or strain rate).  Fluids which obey Eq. (45) are 
said to be Newtonian. By default, all of the fluids contained in the CFD2000 
Fluid Material Library are assumed to be Newtonian, and are assigned a 
constant viscosity µ valid at a single reference temperature. 

Fluids for which the shear stress is not directly proportional to the strain 
rate are known as non-Newtonian fluids, discussed in the following section. 
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Non-Newtonian Models 

Many liquids, including plastic melts and some suspensions and solutions, 
display a more complicated, nonlinear relationship between the applied 
stress and their observed strain rate.  In these fluids, some mechanism other 
than molecular diffusion contributes to the shearing motion and, as a result, 
the use of a laminar viscosity independent of the rate of strain is no longer 
valid.  Such fluids are called non-Newtonian fluids.  Figure 2.1 below 
shows the relationship between stress and strain for a Newtonian fluid and 
some classes of non-Newtonian fluids. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1   Stress-strain relationships for non-Newtonian fluids. 
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Power Law Model 

The power law model (also known as the Ostwald-deWaele, or two-
parameter model) is the most general of Storm’s non-Newtonian viscosity 
models.  It assumes that the laminar viscosity µ can be expressed as a 
continuous function of the strain rate according to the formula: 

 1−Γ= BA &µ  (47) 

where B is a dimensionless constant called the power-law index, and A is an 
empirical coefficient known as the consistency factor (SI units: Pa/sB or 
kg/m/s2-B), which serves as an index of how viscous the fluid is.  Note that 
for B = 1, Eq. (47) reduces to Newton’s law (Eq. 45) with A = µ.  Thus the 
deviation of B from unity indicates the degree of non-Newtonian behavior of 
the fluid.  Specifically, when B < 1, the fluid is said to be pseudoplastic and 
the viscosity is found to decrease with increasing strain.  On the other hand, 
when B > 1, the fluid is said to be dilatant and the viscosity increases with 
increasing strain. Dilatant fluids are generally much less common than 
pseudoplastic ones.  Examples of several pseudoplastic fluids involving 
solid suspensions in water are given in Table 2.1 below.  

  Table 2.1  Non-Newtonian power law parameter for various fluids at 300K. a 

  A     B 

                FLUID COMPOSITION (% weight)               (kg/m/sB)        -- 

 4.0% paper pulp in water    20.0  0.575 
 3.0% carboxymethylcellulose (CMC) in water  9.29 0.566 
 33% lime in water     7.19 0.171 
 23.3% Illinois clay in water    5.56 0.229 
 1.5% CMC in water     3.13 0.554 
 54.3% cement rock in water    2.51 0.153 
 0.5% hydroxyethylcellulose in water (293K)  0.84 0.509 
 0.67% CMC in water     0.304 0.716 

  a Sources:  Bird, Stewart, and Lightfoot, 1960; Tanner, 1985 
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Note that when B<1, Eq. (47) predicts infinite viscosity as the strain 
becomes vanishingly small, and zero viscosity as the strain becomes very 
large.  Despite these limitations, the power law model is nevertheless widely 
used due to its simplicity, and proves adequate for many common flow 
problems. 

Carreau Model 

The Carreau model is based on the observation that many fluids that 
otherwise display pseudoplastic behaviors at moderate shears become 
approximately Newtonian when the strain rate is very large or very small 
[Carreau, 1972; Tanner, 1985].  The functional form of the Carreau model 
used in Storm is 
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where µ∞ and µ0 are the asymptotic viscosities at large and small strain 

rates, respectively; and A and B are fluid-specific constants determined, for 
example, by plotting the observed viscosity as a function of strain rate on a 
log-log plot.  The Carreau model is particularly well-suited for certain 
dilute, aqueous, polymer solutions and melts [e.g., Tiu and Tam, 1989].  
Table 2.2 below lists representative model parameters for several Carreau 
fluids. 

Table 2.2   Non-Newtonian Carreau model parameters for various fluids.a 

a Source:  Tanner, 1985. 

µ 0 µ ∞ A B

FLUID kg/m/s kg/m/s s
-1 -

Phenoxyl-A at 485K 12400. 0. 7.44 0.728
High-density polyethylene at 443K 8920. 0. 1.58 0.496
5% polystyrene in Aroclor 1242 101. 0.059 0.84 0.380
0.75% Separan-30 in 95/5 mixture 

(by weight) of water/glycol 10.6 0.010 8.04 0.364
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Bingham Fluid Model 

Bingham fluids (also called Bingham plastics) include a broad range of real 
liquids that display a finite yield stress.  Common examples include slurries, 
paints, and suspensions of clays in water.  Storm uses a model based on the 
Perzyna hypothesis 
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where A is an arbitrary, dimensionless multiplier supplied by the user 
(typically, A = 103 ~ 105), µ∞ is the viscosity in the limit of very large strain 
(the fully plastic limit), and τyield is the yield (threshold) stress for 
deformation. Equation (49) indicates that the material is essentially 
Newtonian at very low strain rates (although the viscosity is very high), and 
becomes plastic once a threshold shear is exceeded (See also Fig. 2.1).  This 
artifice is introduced so that the stress can be modeled as a piecewise 
continuous function of the strain rate, without the discontinuity inherent in 
“pure” Bingham plastics at the yield point. 
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Table 2.3   Non-Newtonian Bingham model parameters for aqueous 
nuclear fuel slurries.a 

a Source:  Bird, Stewart, and Lightfoot, 1960, Table 1.2-1.  bViscosity relative to 
heavy water at the same temperature and pressure.  cLognormal particle size 
distribution parameters, where Dp is the mean particle diameter and s is the 
nondimensional standard deviation about the mean. 

Examples of the Bingham parameters and τyield for two aqueous slurries are 
presented in Table 2.3 above.  Note that these parameters depend not only 
on the “thickness” of the slurry (expressed here in terms of the volume 
fraction of the suspended solid particles), but also upon the mean size and 
the size distribution of the particles themselves. 

VOLUME 
FRACTION 

SOLIDS

PLASTIC 

VISCOSITY
b 

µ∞/ µw

YIELD STRESS   

τyield

SUSPENDED MATERIAL
SOLID 

CONTENT - - N/m
2

UO2, Coarse Thin 0.3 221. 58.2

(Dp = 1.4 mm, Medium 0.5 8100. 449.
     s = 1.7)c Thick 0.7 297000. 1730.
ThO2, Very Fine Thin 0.3 1340. 1420.
(Dp = 0.03 mm, Medium 0.5 163000. 6590.
     s = 2.7) Thick 0.7 19800000. 18100.
ThO2, Coarse Thin 0.3 36.6 42.7
(Dp = 2.4 mm, Medium 0.5 403. 198.
     s = 1.7) Thick 0.7 4450. 542.
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Customized Viscosity Models 

In addition to the above viscosity models, Storm also allows the user to 
define customized models.  Three options are available from the CFD2000 
interface: a linear function, inverse function, or general user-defined model. 

§ Linear Function Model 

Viscosity may be defined as a linear function of a Storm-computed or stored 
variable 
 ba += φµ  (50) 

where a and b are user-defined constants and φ is the dependent variable.   

§ Inverse Function Model 

Viscosity may also be described as an inverse function of any dependent 
variable 

 
φ

µ
cb

a
+

=  (51) 

where a, b and c are user defined constants and φ is the dependent variable.   

§ General User-Defined Model 

Under this option, viscosity may be defined as an arbitrary user-defined 
function 
 ( )txf ,,φµ =  (52) 

where φ is any dependent variable, x denotes the physical space coordinate, 
and t is time.   

A constant viscosity approximation is appropriate for many fluids and flow 
conditions.  However, for gas flows in which large temperature fluctuations 
are expected, it may be more appropriate to employ the user-defined laminar 
viscosity option and account for the temperature dependence explicitly.  For 
example, one could use Sutherland’s equation and compute the laminar 
viscosity according to the relation 
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where µ (Tref) is the viscosity at the reference temperature Tref and A is a 
gas-specific constant (Sutherland's constant) with units of absolute 
temperature.  

Specific Heat 

The specific heat at constant pressure Cp is an intrinsic material property 
(SI units:  J/kg/deg K) which must be specified whenever the heat transfer 
option is selected.  CFD2000 provides various options to prescribe Cp.   

Constant Value 

By default, Storm assumes that CP is constant and uniform throughout the 
flow, with a value either specified by the user or consistent with the fluid 
selected from the Fluid Material Property Library. 

Field Value 

When the homogeneous gas phase is a mixture of various gaseous species—
as in chemically reacting flows or multi-species flows—it is necessary to 
compute an effective specific heat for the homogeneous phase.  The Field 
Value option automatically computes the effective specific heat as: 

 ipC
N

i iXeffpC ,1, ∑
=

=  (54) 

where xi and Cp,i are, respectively, the mass fraction and the specific heart 
of the ith species.  
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General User-Defined Specific Heat Model 

However, for flows in which the temperature varies over a wide range, it is 
recommended that the user supply a customized expression for CP.  Storm 
allows for Cp to be defined as an arbitrary function of the form 

 ( )txfpC ,,φ=  (55) 

where, for example, φ may represent temperature and pressure.  
Temperature-dependent Cp models for various gases can be found, for 
example, in Van Wylen and Sonntag [1976] or Potter and Somerton [1993]. 

Thermal Conductivity 

The thermal conductivity κ is an intrinsic material property (SI units:  
w/m/deg K).  CFD2000 provides various options to define the thermal 
conductivity of a fluid or solid.  In many practical cases, the thermal 
conductivity is either a constant or a function of temperature. 

Constant Value 

Storm assumes thermal conductivity, by default, to be uniformly distributed 
with a constant value either supplied by the user, or consistent with the 
particular fluid/solid chosen for the simulation.  Values of κ for the fluids in 
the Fluid Material Property Library are valid at a single reference 
temperature and pressure—usually 300K and 1 atm. 

Prandtl Number 

CFD2000 also offers the option to specify a Prandtl number Pr for the flow. 
If this option is chosen, then the thermal conductivity is computed from the 
Prandtl number as 

                         
Pr

pCµ
κ =           (56) 
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Note that this option requires that the Heat Transfer option be specified 
(and, therefore, that Cp be defined). 

Field Value 

When the homogeneous gas phase is a mixture of various gaseous species, 
as in chemically reacting flows, it is necessary to compute an effective 
thermal conductivity for the homogeneous phase. The Field Value option 
auto-matically computes the effective thermal conductivity of the fluid based 
on the molecular weights and constitution of the individual species in the 
mixture as 

 ∑
=

=
N

i iiXeff 1
κκ  (57) 

where Xi and κi are the mass fraction and thermal conductivity of the ith 
species, respectively. 

Thermal conductivity usually varies with temperature, so in cases where the 
temperature varies significantly, the user may prefer to activate one of the 
model options from the Thermal Conductivity options subpanel and 
prescribe a simple temperature dependent model. CFD2000 offers the 
following choices: 

§ Linear Function 

Thermal conductivity can be defined as a linear function of any Storm 
scalar variable 
 βφκ += A  (58) 

where A and β are constants and φ is the scalar variable.  Temperature-
dependent conductivity models for various gases and liquids can also be 
found, for example, in Weast (1987). 
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§ Inverse Function 

Thermal conductivity may also be defined as an inverse function of a Storm 
scalar variable as 

 
cb

a
φ

κ
+

=  (59) 

where a, b and c are user-defined constants and φ is the scalar variable.   

§ General User-Defined Conductivity Model 

Thermal conductivity may also be defined as an arbitrary user-defined 
function 
 ( )txf ,,φκ =  (60) 

where φ is any dependent variable, x denotes the spatial coordinate, and t is 
time. 

Thermal Expansion Coefficient 

Storm assigns fixed default values for this parameter valid at 300 K for 
most fluids.  The user may specify a value for the thermal expansion 
coefficient or decide to use the value for a particular fluid type from the 
Fluid Material Property Library. 

Ratio of Specific Heats 

The ratio of the specific heats γ is a key parameter for compressible flows, 
and must also be specified before any of the isentropic density models can 
be used.  

Constant Value 

The user may either specify a constant value for γ, or decide to use the 
prescribed value for a given fluid (gas) from the Fluid Material Property 
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Library.  Note that if the Compressibility option has not been activated, γ 
can still be specified as a parameter from the Isentropic Gas Law Density 
Model subpanel. 

Field Value 

When the homogeneous gas phase is a mixture of various gaseous species, 
as in chemically reacting flows or multi-species, it is necessary to compute 
an effective ratio of the specific heats for the homogeneous phase. The Field 
Value option automatically computes this effective ratio as 

 ∑
=

=
N

i iiXeffp 1, γγ  (61) 

where Xi and γi are the mass fraction and the specific heat ratio for the ith 
species, respectively. 

General User-Defined Model 

The ratio of specific heats may be defined as an arbitrary function as 

 ( )txf ,,φγ =  (62) 

where φ is any scalar variable, x is the physical space variable, and t is time. 

CFD2000 Materials Property Library 

CFD2000 includes a built-in Material Property Library that contains a 
database of the various thermophysical quantities needed in CFD modeling.  
Table 2.4 below lists the fluids (gas and liquid) available in this library.  
Note that for most of the gases, three different models are offered. These 
correspond to the principal density models available in CFD2000—namely, 
the constant density, the ideal gas, and the isentropic flow models. 
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      Table 2.4   Fluid materials in the CFD2000  
Material Property Library. 

 

MATERIAL FORMULA STATE
NUMBER OF 

MODELS

Air Mixture Gas 3
Ammonia NH 3 Gas 3
Argon Ar Gas 1
Butane C4H 10 Gas 1
Carbon Dioxide CO2 Gas 3
Carbon Monoxide CO Gas 3
Engine Oil 

(SAE 30, unused) - Liquid 1
Ethylene C2H 4 Gas 2
Ethylene Glycol C2H 6O2 Liquid 1
Freon 12 CCl2F2 Liquid 1
Glycerin C3H 8O3 Liquid 1
Helium He Gas 3
Hydrogen H 2 Gas 3
Mercury H g Liquid 1
Methane CH 4 Gas 3
Neon Ne Gas 3
Nitrogen N 2 Gas 3
Oxygen O 2 Gas 3
Steam H 2O Gas 2
Water H 2O Liquid 4
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TURBULENCE MODELING 

Turbulence modeling in CFD2000 is performed using a two-equation k-ε 
model.  This model solves transport equations for the turbulence kinetic 
energy k, and the dissipation rate ε. The turbulent shear stresses in the 
Reynolds-averaged Navier-Stokes equations are then modeled using the 
Boussinesq hypothesis with an appropriate relation for the eddy or turbulent 
viscosity, based on the computed values of k and ε. 

The turbulent viscosity coefficient µT plays a role similar to the laminar 
viscosity in Storm, except that it controls the rate at which momentum is 
redistributed due to turbulent eddy motions rather than by molecular 
diffusion.  As such, it is not an intrinsic fluid property, but is rather a space- 
and time-dependent quantity whose value depends entirely on the local 
turbulent characteristics of the flow. 

k-ε Turbulence Model 

The k-ε turbulence model is one of several two-equation models that have 
developed over the years.  It is probably the most widely and thoroughly 
tested of them all (Nallasamy, 1987). Based on simple dimensional 
arguments concerning the relationship between the size and the energetics 
of individual eddies in fully developed, isotropic turbulence, the model 
employs the following diagnostic equation for the turbulent viscosity 
(Launder and Spalding, 1974) 

 
ε

ρµµ

2kC

T =  (63) 

where Cµ is a dimensionless model constant, ρ is the local fluid density, and 
k and ε are the specific turbulent kinetic energy (SI units: m2/s2) and 
turbulent kinetic energy dissipation rate (SI units: m2/s2), respectively.  
These quantities are in turn computed using a pair of auxiliary transport 
equations of the form 
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and 
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where C1 and C2 are additional dimensionless model constants; Prk and Prε 
are the turbulent Prandtl numbers for kinetic energy and dissipation, 
respectively; Sk,p and Sε,p are source terms for the kinetic energy and 
turbulent dissipation; and  
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is the turbulent production rate.  Values for the various dimensionless 
constants used in Eqs. 1-4 are given in Table 2.5 below. 

Table 2.5   Dimensionless constants for Storm k-epsilon turbulence model. 

 Cµ   C1   C2 Prk Prε 

0.09 1.44 1.92 1.0 1.3 

These values are identical to those recommended by Launder et al., 1972, 
based on an evaluation of several plane turbulent free jet and mixing layer 
simulations.  As such, they represent a good “consensus” parameter set, and 
can be assumed to provide a model accuracy in the range from about 10% 
to 50%, depending on the flow (Launder and Morse, 1979). 
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Despite the wide applicability of the k-ε turbulence model, the user should 
nevertheless be aware of its limits.  In particular, it should be kept in mind 
that all two-equation turbulence models—the k-ε model included—are valid 
only in situations where the assumed linear relationship between turbulent 
shearing stresses and the resultant mean strain rate (as in Eq. 45, for 
example) is appropriate (i.e., where the primary influence of the turbulent 
mixing is a downgradient or diffusive momentum transport).   Although this 
is usually the case for most turbulent flows, there are situations, especially 
in highly complex flows involving asymmetric wakes, strong convection, or 
combustion, where this assumption can break down locally and invalidate 
the k−ε approach (Nallasamy, 1987). 

A second caveat stems from limitations inherent in the transport equations 
used to predict k and ε.  Eqs. 64 and 65 are in fact only strictly valid at high 
Reynolds number—that is, for fully developed turbulence—and for 
turbulence that is isotropic (independent of direction).  As a result, the 
Storm k−ε turbulence model cannot be expected to be equally applicable to 
all flow regimes, and cannot in particular be expected to accurately simulate 
the entire transition from laminar to turbulent flow (e.g., immediately 
adjacent to walls or other solid boundaries), or the turbulent mixing 
characteristics of rapidly swirling or strongly stratified flows. 

In turbulent flows, the ability of the fluid to transmit heat internally is 
enhanced somewhat due in part to the fact that turbulent eddies generally 
have length scales that are much larger than the molecular mean free path.  
Consequently, whenever the Turbulent Flow option is activated, an 
additional quantity known as the turbulent thermal conductivity kT is 
defined for use in the thermodynamic energy equation.  In Storm, kT is 
defined relative to k according to the expression 

 
T

T Pr
κ

κ =  (67) 

where PrT is the turbulent Prandtl number.  By default, Storm assumes Pr 
= 0.9 for all fluids independent of turbulent strength. 
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General User-Defined Model 

In addition to the standard k-epsilon model, CFD2000 offers the ability to 
define a custom model of the form, 

 ( )tfT ,,xφµ =  (68) 

where φ is any scalar variable in Storm, x is the spatial variable, and t is 
time. 
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POROUS MEDIUM MODELING 

Fluid flows through porous material are very common in industrial 
processes.  The porous medium is categorized as isotropic if resistance to 
the flow does not vary with the flow direction, and anisotropic if the flow 
resistance depends on flow direction.  Porous regions are also commonly 
used to model flows in which geometry is otherwise too complicated to 
resolve with a practical number of grids such as filtered screens. 

In Storm, the momentum equation for flow through a porous medium has 
the following form in the i-direction: 
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where κi is the –direction-dependent permeability of the porous medium and 
Ci is the nonlinear momentum loss coefficient in the i-direction.  If Ci and κi 
are the same for all directions, the porous region is isotropic—otherwise, it 
is anisotropic.  If the transient, convection, diffusion, and body force terms 
in Eq. 69 are dropped, the equation reduces to 
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which is the anisotropic form of the Forcheimer-Brinkman model. If Ci= 0 
and κi is isotropic, the result is Darcy’s equation, 
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Note that the off-diagonal terms of the permeability tensor have been 
assumed to be zero. Thus, the principal axes of the permeability tensor 
should coincide with the grid directions. 
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CHEMICALLY REACTING FLOWS 

The coupling between chemical reactions and fluid flows in complex 
geometries is of interest to users wishing to simulate gas turbine 
combustors, chemical reactors, and power generation devices such as 
internal combustion engines and rocket propulsion systems.  When 
considering such a simulation, two factors should be considered: 

§ The speed of the reaction, and  
§ The characteristic time scale of the flow itself. 

Reacting flows are classified according to the relative magnitudes of these 
time scales, and these analysis dictates which type of chemical reaction 
model should be used.  CFD2000 Version 3.0 features six different types of 
chemical reaction models: 

§ A multi-step, finite-rate chemistry model 
§ A mixture fraction model 
§ An instantaneous chemistry model 
§ An equilibrium model 
§ A “frozen” reaction model, and  
§ A chemical vapor deposition model. 

Brief descriptions of each of these models and their typical uses are given 
below. 

Finite Rate Chemistry Model 

The CFD2000 finite rate chemistry model is the most generally applicable 
of the six choices offered under Version 3.0.  It is particularly suited for 
situations in which the chemical reactions cannot be completed over the 
duration of a single computational time step, or when the range of reaction 
time scales is very large.  In such situations, the time required for molecular 
collisions within the flow must be taken into account, and reaction models 
based on the theory of chemical kinetics must be developed.  
Mathematically, this requires the solution of a set of conservation equations 
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which describe the transport of species within the fluid, coupled with source 
terms derived from chemical kinetics models that describe the production 
and destruction of species within the flow.  These kinetic source term 
models, however, cause the equations to become nonlinear and highly 
“stiff”, necessitating the use of a specialized numerical treatment to solve 
the species equations (Curtics and Hirschfelder, 1952). 

CFD2000 uses an “operator splitting” solution technique (Rizzi and Bailey, 
1965; Eklund et al., 1986; Chen et al., 1994) to solve the finite-rate species 
conservation equations.  This technique, which effectively overcomes much 
of the difficulty introduced by the stiffness of the governing equations, splits 
the solution at each discrete model time interval into a two-step predictor-
corrector process.  In the predictor phase, effective reaction rates, based on 
an application of the law of mass action and the Arrhenius formula, are 
computed for the current model time step.  Using these effective rates, the 
species conservation equations are integrated one step forward in time 
(using a fully implicit integration scheme) with the convection and diffusion 
terms omitted.  The result is a tentative prediction of the species 
concentrations at the new time step.  This prediction is then itself updated 
(the corrector step) by integrating the conservation equations once more, this 
time with convection and diffusion included.  Any heat released or absorbed 
during the reactions is then added to the total flow energy, the time step is 
advanced one increment, and the process repeats.  

Your CFD2000 Version 3.0 installation includes a library of several pre-
defined finite rate reaction models.  As indicated in Table 2.6, most of these 
reactions involve at least two “steps” (individual reactions), and a few 
require thirty or more.  Required inputs for these models include, for each 
reaction, the individual reaction equations, the reaction collision coefficient 
A, the collision factor exponent n, the activation energy E, and the values of 
any third body coefficients M.  You can inspect the values of these inputs 
for any of the predefined models directly from the CFD2000 interface, or by 
referring to the react1.lib text file included with your installation. Users 
wishing to add their own finite rate models to the chemical reaction library 
can do so by appending the relevant stoichiometric and kinetic data (in the 
proper format) to this file, and by adding the appropriate thermodynamic 
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data (heat capacities, enthalpies, Gibbs energies, etc.) to file species.lib.  
Contact Adaptive Research for assistance. 

     Table 2.6.  Finite rate Chemical Reaction Library models. 

REACTION NAME
REACTION 

STEPS
SPECIES ELEMENTS

H2 + O2 2 4 2
H2 + Air 2 5 3
H2 + Air 7 7 3
H2 + O2 7 6 2
H2 + Air 9 7 3
H2 + O2 9 6 2
H2 + Air 32 13 3
C2H4 + Air 10 10 4
C2H4 + O2 10 9 3
H2 + Air 16 10 3
CH 4 + O2 45 15 3
Air Dissociation 32 12 2
Air Dissociation 11 7 2
CH 4 + O2 4 6 3
CH 4 + Air 4 7 4
C3H8 + O2 4 6 3
C3H8 + Air 4 7 4
Liquid C12H26 + Air 1 5 3
Liquid C13H28 + Air 1 5 3
Rarefied Gas 10 9 4
SiH 4 + H2 2 4 2
Si4 + H2 20 24 2
NOx  Formation 5 11 4

Number of-
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Mixture Fraction Model 

The CFD2000 mixture fraction model is a specialized model intended 
primarily for oxidation (e.g., combustion) simulations involving reactant 
gases injected from one or more nozzles into a common domain.  Its use is 
limited to single-step reactions with finite (non-zero) rates that are 
nevertheless fast enough to be completed within one model (fluid) time step. 

The name “mixture fraction” stems from the fact that this model treats the 
influx of gases at each inlet boundary as a mixture of two generic 
components:  (1) the reactant gas (or fuel), which itself may be composed of 
a mixture of several chemical species, and (2) the carrier gas (typically, air).  
These components are assumed to enter the model domain completely 
mixed, with the relative mass fraction of fuel to air crossing the inlet 
boundary per unit time designated by the user-specified quantity F.  Thus, 
F—along with the mass flux Mdot (or velocity) and the temperature—
constitutes an extra boundary condition that must be set for each inlet 
whenever the mixture fraction model is used.   

NOTE  In its delivered configuration, CFD2000 Version 3.0 allows fuel to 
enter the model domain through at most two inlets when using the mixture 
fraction model.  However, this restriction can be easily relaxed through the 
use of user coding.  Contact Adaptive Research for assistance.   

Once the inlet boundary conditions have been set, the mixture fraction 
model employs a two-step, predictor-corrector technique similar to that used 
in the finite rate chemistry model, although the steps are applied in reverse 
order.  In the first step, the local concentration of fuel at each grid location 
within the model domain is determined by solving a single species 
conservation equation for F with all sources and sinks set to zero.  Once F is 
known, the local concentration of each species is calculated by referring to 
the local density and the relative mass fractions of each component as 
dictated by the reaction stoichiometry.  This provisional prediction is then 
revised (corrected) by temporarily “freezing” the effects of convection and 
diffusion and applying the reaction chemistry at each grid point.  (Note, 
however, that unlike the finite rate chemistry model, the mixture fraction 



Property and Physical Models 

53 

model assumes that the reaction can be completed in its entirety within a 
single time step.)  Any heat released during the reaction is then added to the 
total flow energy, the time step is advanced one increment, and the process 
repeats. 

Your CFD2000 installation includes a built-in library of three mixture-
fraction, fuel-air reaction models (Table 2.7).  As in the finite rate model, 
each of these reactions is defined by the three Arrhenius coefficients A, n, 
and E, as well as its case-specific reaction equations. Additions to this 
model library can be made by appending your specific “fast chemistry” 
reaction data to file react4.lib.  Contact Adaptive Research for assistance. 

     Table 2.7.  Mixture fraction, instantaneous, and equilibrium reaction 
          library models. 

      Number of … 

                REACTION  
REACTION NAME     STEPS a  SPECIES       ELEMENTS 

H2 + Air       1         5       3 

CH4 + Air       1         7       4 

C3H8 + Air       1         7       4 

 aMixture fraction and instantaneous models only. 

Instantaneous Reaction Model 

When the chemical reactions in the flow are so fast relative to the model 
time step that the reaction time is effectively zero, the instantaneous 
reaction model can be applied.  

The instantaneous model is similar in many ways to the mixture fraction 
model.  Both are intended primarily for fast oxidation simulations, and both 
require that the relative mass fraction of fuel to air at each inlet be 
prescribed through a boundary condition F. However, unlike the mixture 
fraction approach, the instantaneous model discards the kinetic source terms 
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altogether and instead relies entirely upon the stoichiometric formula to 
obtain the proper balance of fuel and reaction products.  Such reactions are 
always carried to completion (stoichiometric balance) at each grid point as 
long as there is sufficient fuel present after the first (predictor) time step.  If, 
however, the reactant mass is not stoichiometric, then the reaction process is 
limited by the exhaustion of the fuel species and the yield is diminished 
proportionally. 

The CFD2000 chemical reaction library contains three built-in 
instantaneous reaction models.  These model reactions are the same ones 
available in the mixture fraction model library, and are based on identical 
stoichiometry (Table 2.7).  The only difference is that no kinetic (Arrhenius) 
coefficients are provided in the input file react2.lib. 

Equilibrium Chemistry Model 

The equilibrium chemistry model can be used for reactions that are able to 
proceed in both directions (i.e., reactant to product, or product to reactant), 
and that are fast enough that they can be treated as effectively 
instantaneous.  Mixtures characterized by such reactions tend to maintain a 
chemical equilibrium everywhere within the fluid based on a state of 
minimized Gibbs free energy.  As a result, the products of such reactions 
can be determined solely by the thermodynamic state variables (for example, 
temperature and pressure) of the system. 

The CFD2000 equilibrium chemistry model computes, for each species and 
at each grid point in the model domain, a chemical potential function based 
on the local temperature, pressure, and species concentration (determined 
from the mixture fraction F).  These potential functions are, in turn, 
incorporated into a system of N nonlinear algebraic mass conservation 
equations, where N is the number of individual atomic elements involved.  
Assuming that the cumulative molar concentration of elements in the 
mixture remains constant, these equations are then solved and a provisional 
estimate of the updated species concentrations is obtained.  Local 
temperatures and effective gas constants are then recalculated, and the 
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whole system is solved again.  The process then repeats from the beginning 
and continues until convergence is obtained.   

Your chemical reaction library contains three built-in reactions based on the 
equilibrium chemistry approach.  These are the same three fuel-air reactions 
found in both the mixture fraction and the instantaneous chemistry model 
libraries (Table 2.7).  User-supplied additions to the equilibrium chemistry 
library can be appended to file react3.lib. 

Frozen Reaction Model 

The frozen reaction model is essentially a multi-species mixing model in 
which all reaction rates are artificially set to infinity, effectively eliminating 
(“freezing”) the chemical component of the fluid flow.  This model can be 
used to compute the concentrations of up to twenty individual components 
within the model domain, as well as the effective (mass-weighted) heat 
capacity and specific heat ratio of the bulk mixture.  Required inputs are the 
mass fluxes of each species at one or more inlets (a boundary condition), 
plus the appropriate thermodynamic data for each species (included in 
species.lib).   

Chemical Vapor Deposition Model 

Chemical vapor deposition (CVD) is a process in which chemical reactions 
in a gas and on the surface of an adjacent solid substrate are used to induce 
the growth of a thin, solid film directly onto the surface.  Its most common 
application is in the electronic component industry, where it used to form the 
thin silicon wafers that comprise most semiconductor devices and integrated 
circuits.  But it is also finding increased use as a general technique for 
creating high temperature ceramic coatings (Galasso, 1991). 

As implemented in CFD2000, the chemical vapor deposition model contains 
two distinct components: (1) a finite-rate, multi-step, gaseous-phase 
chemistry model, and (2) a surface reaction model.  These models must be 
specified individually by the user, and they must be compatible with each 
other.   
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Currently, CFD2000 includes just two gaseous phase reaction models 
suitable for CVD, both of which are intended for simulations of silicon 
deposition from a mixture of silane (SiH4) and molecular hydrogen.  By 
selecting either of these models, CFD2000 automatically activates an 
additional term in the species conservation equation that simulates the effect 
of thermal-gradient driven mass diffusion (the Soret term).  Kinetic and 
stoichiometric data for both CVD reaction models is contained in the file 
react1.lib (the finite rate chemistry input file), and the Soret term is 
modeled in the user-accessible Fortran file ucvddif.f. 

CFD2000 also contains a library of models for several types of surface 
reactions, each of which can be classified as being either a catalytic or a 
combustion type reaction (Table 2.8).  In catalytic reactions, the solid 
substrate acts only to induce (catalyze) the gas phase reaction and remains 
chemically inert.  (Such reactions are also sometimes referred to as 
adsorption reactions.)  On the other hand, in combustion surface reactions, 
the substrate actually participates in reaction itself, such as in the case 
where an oxidizing gas passes over a solid fuel surface.   

Table 2.8   Surface reaction library models. 

 

In most CVD reactors, deposition is initiated by heating the substrate—
either by thermal conduction or by the dissipation of high frequency radio 

REACTION NAME TYPE
REACTION 

STEPS
SPECIES ELEMENTS

Copper + N2 Catalytic 1 2 1

Copper + O2 Catalytic 1 2 1
Copper + Air Catalytic 2 4 2
Carbon + O2 Fast combustion 1 4 2

Carbon + O2 Slow combustion 1 2 2
SiH4 deposition Catalytic (CVD) 2 4 2

Number of-
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energy.  Thus the types of surface reactions relevant for CVD modeling 
clearly fall into the catalytic category.  Currently, only one CVD surface 
reaction model of this type is available from the CFD2000 reaction library.  
This model—a two-step, four-species, finite rate catalytic model—is 
intended for use in simulations of Si deposition from silane gas. As such, it 
serves as the appropriate complement to either of the two SiH4+H2 finite-
rate, gaseous phase CVD models available from the library.   

Input data for all CFD2000 surface reaction models is contained in file 
react5.lib.  This file contains, for each model, the appropriate kinetic and 
stoichiometric data for each reaction.  It also includes, for each of the two 
steps involved in the CVD surface reaction model, a pair of additional 
coefficients used to model the temperature-dependent sticking coefficient.  
Users wishing to modify any of this data may do so by editing react5.lib or, 
if an additional surface reaction model is desired, by appending the 
appropriate data.  Contact Adaptive Research for assistance.   
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LAGRANGIAN PARTICLE TRACKING 

Two-phase flows in which discrete particles are dispersed in a continuous 
fluid occur in many scientific and engineering applications.  They are of 
critical importance in fields such as rocket and turbojet propulsion, chemical 
processing, and pollution control.  Transfer of mass, momentum, and energy 
between the continuous fluid and the particles plays an important role in 
determining the characteristics of the flows. 

Two-phase flow simulations use either an Eulerian or a Lagrangian 
approach for modeling the particulate phase.  The Eulerian approach treats 
the particle phase as a second continuous fluid, and both phases 
interpenetrate.  The Eulerian approach is appropriate for flows containing 
very fine particles with diameters in the micron or sub-micron range (e.g., 
smoke or powder dust). It has relatively high computational efficiency, 
especially for monodispersed systems.  The Lagrangian approach treats 
particles as discrete entities interacting with a turbulent or laminar 
continuous fluid flow and calculates their individual trajectories; the 
Eulerian approach is appropriate for polydispersed particle sprays. 
CFD2000 uses the Lagrangian approach. 

The two-phase flow simulation in CFD2000 is a fully interactive 
combination of Eulerian fluid and Lagrangian particle flow calculations.  
Interactions between the continuous phase and the particulate phase are 
complex.  Ordinary differential equations describe the particle trajectories, 
deriving their coefficients from the conditions in the fluid phase at the 
particle locations.  In continuous phase calculations, the influence of the 
particles is transmitted through source terms added to the Navier-Stokes 
equations.  A global iterative process adjusts the continuous phase source 
terms and the particle phase coefficients. 

Table 2.9 on the facing page shows the allowable combinations of fluid and 
particle material states.  Particle size distributions can be specified, and 
models for size distribution changes due to evaporation, breakup, or 
collision and coalescence are provided. 
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            Table 2.9   Material phase combinations. 

 CONTINUOUS PHASE PARTICULATE PHASE 

 Gas           Liquid  
 Gas           Solid  
 Liquid           Gas  
 Liquid           Liquid  
 Liquid           Solid  

Particle Phase 

Particles enter the flow at particle injection inlets, which are designated 
boundaries defined for the continuous flow domain.  These boundaries may 
be interior or exterior to the flow domain and may be of any type; they need 
not correspond to fluid inlets. 

A set of initial characteristics for particles entering the flow is associated 
with each injection inlet.  Particle characteristics are size, velocity, 
temperature, and material phase and properties.  At each injection inlet the 
particles may have a specified uniform size, or individual sizes may be 
assigned by sampling on a selected distribution function. Similarly, particle 
initial velocities may be uniform or may be assigned by sampling on a 
specified injection velocity profile. 

After injection, the motion of each particle is calculated by solving the 
Lagrangian equation of motion. Optionally, particle temperature may be 
calculated by solving a heat transfer equation, or by assuming equilibrium 
with the continuous phase local temperature.  Also optionally, changes in 
size for liquid particles may be calculated by applying models for 
evaporation, breakup, or collision and coalescence. 
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Particle Size Distributions 

Most engineering multiphase flow applications have particles that are non-
uniform in size and shape. Complete descriptions of particle ensemble 
geometric characteristics require a number of distribution functions.  These 
are obtained experimentally as spectra over discrete measurement bins and 
are fitted with analytic functions having one or more correlation constants. 
Specification of the distribution functions and their correlation constant 
values are sufficient to describe the particle ensemble.  

In particle tracking simulations, it is usual to describe the particle ensemble 
by a single distribution function relating the number of particles to a 
characteristic size.  CFD2000 allows selection of either the Rosin-Rammler 
distribution function or the χ-Squared distribution function.  (Uniform and 
user-defined particle size distributions are also available as additional 
options.)  

The Sauter Diameter, which is defined as the ratio of the particle volume to 
the particle area, is commonly used as the characteristic size in engineering 
applications.  However, some published data refer to actual particle 
diameter, and either of the two sizes may be specified in CFD2000.  In 
either case, the primary constant defining a specific particle ensemble is the 
mean particle characteristic size.  This is defined as 
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where D is characteristic particle size, f(D) = dF(D)/dD and F(D) is the 
cumulative number of particles in the distribution having sizes between zero 
and D. 

For a liquid particle, the Sauter Diameter is determined by particle 
deformation and varies in accordance with forces acting on the particle.  
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Rosin-Rammler Distribution 

The Rosin-Rammler distribution function can be expressed in terms of the 
cumulative fraction of total particle volume occupied by particles with sizes 
between zero and D as 
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D  is the mean particle size for the distribution, and X and q are correlation 

constants related to D  through the function Γ . This volume distribution is 
converted into a number distribution through 
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χ-Squared Distribution 

The normalized number distribution function for the χ-Squared distribution 
is 
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and the corresponding cumulative distribution function is  
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Equation of Motion 

The equation of motion for a particle in a fluid continuum with variable 
velocity (Soo, 1967) is 
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where the five terms on the right hand side in order are drag force, pressure 
gradient force, virtual mass force, the “Basset” term for the effect of non-
uniform flow, and the gravity or other body force.  Here dp is the particle 
diameter, ρp is the particle density, vi is the ith component of the particle 
velocity, ui is the ith component of the fluid velocity, Cd is the drag coeffic-
ient, p is the pressure in the continuous phase, τ is the particle relaxation 
time, and Fbi is the body force per unit mass on the particle. 

Usually the drag and gravity forces dominate the particle motion, and the 
approximate form of the equation of motion is 
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where Ui is the ith component of fluid velocity, and iu′  is the fluctuating ith 
component of the fluid velocity.  Here τ , the particle relaxation time, is 
defined by 
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where rp is the particle radius, and the drag coefficient CD is calculated as 
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where Rep is the particle Reynolds number, defined as 

 
µ

ρ pdiviuiU

p

−′+
=Re  (82) 

The particle position xi  is determined by integrating the equation of motion 
to obtain the velocity v, then integrating the equation 
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Particle Breakup Models 

Storm provides two particle breakup model options: the Taylor Analogy 
Breakup (TAB) model and the Wave Instability breakup model. 

TAB Model 

The TAB model (O’Rourke and Amsden, 1987) is based on an analogy 
between an oscillating and distorting liquid droplet and a spring-mass 
system. The spring restoring force is analogous to the surface tension and 
the external force on the mass is analogous to the gas aerodynamic force.  
Damping forces due to fluid viscosity are added to the analogy.  A 
deformation parameter y is defined as the displacement of the droplet 
surface from its equilibrium position, divided by the equilibrium radius.  
The equation for acceleration of the y parameter is 
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where α  is the liquid surface tension coefficient and µ1 is the liquid 
viscosity, both of which depend on the particle temperature Tp. Integration 
of the above equation gives the time-dependent distortion 
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The droplet oscillation and breakup computations require two normalized 
particle arrays (y for deformation and dy/dt for oscillation).  Droplet 
breakup occurs if and only if deformation exceeds the particle equilibrium 
radius (y(t)>1).  Following breakup, the product drop has the same 
temperature as the parent drop, and its deformation and oscillation 
parameters are set to zero. 
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Wave Instability Model 

This model is based on wave stability analyses of liquid particles (“blobs”) 
ejected from a nozzle (Reitz and Diwakar, 1986). The initial size of the 
blobs is the nozzle diameter. From the wave dispersion equation for a round 
jet, the wavelength of the fastest growing wave Λ  and the maximum wave 
growth rate Ω  are calculated as  
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Here  ppWeZ Re/5.0=  and 5.0ZWeT = . 

The mean product droplet radius and breakup rate are given by: 

 














>Λ

































 Λ

















Ω

≤Λ

=
jrBjrjr

jrBB

pr
0   if  

3/1

4

23
,

3/1

2

23
min

0  if                                               0

π  (88) 

and 

 ΛΩ
−

−=
jrB

prjr

dt
jdr

1726.3
 (89) 



Theoretical Background 

66 

Values for the model constants B0 and B1 in the initial nozzle atomization 
process and the subsequent particle breakup process are shown in Table 
2.10 on the next page. 
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Table 2.10   Model constants in wave instability model. 

  CONSTANT    NOZZLE AUTOMIZATION     SECONDARY DROPLET 
   PROCESS   BREAKUP  

       B0     0.61      0.61  
       B1   10.0      1.73  

Particle Collision and Coalescence 

Storm uses a particle collision model established by O’Rourke (1981) to 
calculate the droplet collision and coalescence. Collisions are calculated for 
particles with locations within a single computational cell in the continuous 
flow domain. The particles associated with each parcel are assumed to be 
uniformly distributed throughout the cell. 

A collision frequency n between a parcel with radius r1 and another with 
radius r2, r1>r2, is  
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where N2 is the number of particles in parcel 2, (v
1
 - v

2
) is the relative 

velocity between parcels, and dV is the volume of the cell.  The probability 
Pn for n collisions is assumed to obey the Poisson distribution 
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where n  is the mean value (n v t= ∆ ) and ∆t  is the time step. The number of 
collisions, n, is determined by sampling on the Poisson distribution. 

The collision impact parameters are calculated stochastically. If the collision 
impact is less than a critical impact parameter, all n collisions are treated as 
coalescence; if the impact is greater, all n collisions are treated as grazing 
collisions. The critical impact parameter for a specific collision depends on 
particle radii, relative velocities, and the surface tension coefficient. Grazing 
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collisions, which usually occur between particles of nearly equal size, are 
calculated between N pairs of particles, where 

 )2,1min( nNnNN =  (92) 

Turbulence Modulation Model 

Turbulence in the continuous phase is modified by the presence of the 
particulate phase. This effect is represented in the continuous phase 
simulations by the source terms Sk,p and Sε,p in the turbulent transport 
equations for kinetic energy and dissipation, respectively.  Shuen (1984) 
obtained expressions for these source terms by using the momentum 
equation with the source terms p,iuS  and p,iuS′ representing particulate 
phase effects on continuous phase momentum and turbulence fluctuation 
velocity 
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where the turbulence fluctuation velocity iu′  has a Gaussian distribution. 

The continuous phase momentum source term has the form 
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where dV is the computational cell volume, NP is the total number of 
particles, and Np is the number of particles for each computational parcel.  
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The turbulence source terms are then 
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and 
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MOVING GRID 

When the computational grid moves as a function of time, the grid velocity 
enters the analysis and must be included in discretizing the governing 
differential equations.  Basically, the grid motion affects the convective 
fluxes of mass, momentum, energy, and other scalar dependent variables.  In 
integral form, the continuity and the generalized transport equations can be 
written as follows: 

Continuity Equation 
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General Transport Equation 
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where V is an arbitrary moving volume, A is the surface of V, φ  is any 
scalar quantity, and Γ∇φ  and S are the diffusive flux and source terms for 
the corresponding variable. 

In Storm, after you specify the characteristics of the grid motion, the mass 
and other convective fluxes across the cell faces are calculated according to 
the local fluid flow conditions and grid velocity.  The cell volume, face area, 
and face direction cosines are recalculated at every time step. 
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CONJUGATE HEAT TRANSFER  

In many flow problems, there are solid objects within the computational 
domain.  Though fluid cannot penetrate the solid-fluid interface, heat can be 
transferred through the interface and conducted inside the solid objects. In 
this circumstance, mass and momentum equations are solved in the fluid 
side only, but the energy equation is applied to both the fluid and solid 
regions.  Because the solid-fluid interface requires attention to ensure 
appropriate conservation of energy, conjugate heat transfer analysis was 
developed. 

Basically, at the solid-fluid interface the following two conditions need to be 
met: 
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where the subscripts f and s are for fluid and solid respectively, and 
subscript i indicates interface. The two conditions state that the heat flux 
and temperature across the fluid-solid interface are continuous.  In general, 
the fluid and solid objects have different specific heats Cp,f and Cp,s.  
Therefore, enthalpy across the interface is not generally continuous. 
Your CFD2000 installation contains a library of several solid materials that 
can be used in conjugate heat transfer analyses.  For each of these materials 
included in the Solid Material Property Library, three parameters are stored:  
the solid density, the specific heat, and the thermal conductivity.  Table 2.11 
on the facing page lists all of the substances contained in the Solid Material 
Property Library, as well as the default values for each of the three 
parameters.  As in the case with the Fluid Material Library, you may 
modify any of these values, or define and store your own material properties 
in the library. 
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 Table 2.11   Solids in CFD2000 Solid Material Property Library.a 

 

DENSITY SPECIFIC HEAT CONDUCTIVITY

MATERIAL kg/m
3 J/kg/degK W/m/degK

Aluminum (pure) 2.707x10
3

897.2 203.

Apple 0.840x103 3600. 0.513

Asbestos 0.577x10
3

1050. 0.16

Banana 0.980x103 3350. 0.481

Brass 8.522x10
3

385. 104.

Brick (common) 1.600x103 840. 0.69

Bronze 8.650x10
3

343. 26.

Chromium 7.200x103 451.4 93.7

Coal (anthracite) 1.300x10
3

1260. 0.26

Concrete 2.240x103 880. 1.13

Copper (pure) 8.954x10
3

384.9 384.

Corkboard 0.160x103 1700. 0.043

Glass-Pyrex 2.640x10
3

800. 1.09

Glass-Window 2.483x103 770. 1.09

Gold 18.880x10
3

129.7 315.

Ice (273 K) 0.913x103 1930. 2.22

Iron (pure) 7.897x10
3

450.2 71.4

Lead 11.373x103 129.6 34.6

Nickel (pure) 8.906x10
3

443.4 90.3

Paper 0.930x103 2500. 0.13

Paraffin 0.900x10
3

2890. 0.02

Plastic (Acrylic) 1.185x10
3

1470. 0.21
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      Table 2.11 Solids in CFD2000 Solid Material Property Library.a 

a Sources:  Edwards et al., 1979; Chase et al., 1985; Weast, 1987; Ekert and 
Drake, 1972; Meyers, 1971. 

DENSITY SPECIFIC HEAT CONDUCTIVITY

MATERIAL kg/m
3 J/kg/degK W/m/degK

Plastic (PVC) 1.714x10
3

1050. 0.092

Platinum 21.450x103 132.6 71.6

Rock (Granite) 2.650x10
3

824. 3.4x10-3

Rock (Shale) 2.73x103 753. 1.9x10-3

Rubber(hard, 273 K) 1.200x10
3

2000. 0.156

Sand 1.515x103 800. 0.027

Silicon 2.330x10
3

713.9 148.

Silver (pure) 10.524x103 234.5 417.

Soil (coarse) 2.050x10
3

1.84 0.52

Stanless Steel (AISI-347) 7.910x103 460. 13.8

Tin (pure) 7.304x10
3

217.7 64.1

Wood (oak) 0.820x103 2400. 0.28

Wood (pine) 0.500x10
3

2800. 0.17

Zinc (pure) 7.144x10
3

388.6 111.
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RADIATION 

CFD2000 uses a six-flux radiation model to simulate radiative heat transfer. 
Basically, it solves the following transport equation in the i-direction: 
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where a is the absorption coefficient, s is the scattering coefficient, and  
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with b as the Stefan-Boltzmann constant, which is 5.6696e-8 
42km

w
. 

Due to the absorption of radiant energy, the above radiation fluxes result in 
a net source for the energy equation, which is 
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SPECIAL TERMS 

In general, it is not necessary to solve the set of governing equations 
specified by Eqs. 1-4 in Chapter 1 in their entirety for all classes of flows.  
Depending on the type of flow, some of these terms may be neglected.  By 
default, Storm does not include some of the influences available as “switch-
on models” from the CFD2000 interface.  These are listed and detailed 
below. 

Swirl Flow 

In certain classes of axisymmetric flows, the swirl component of velocity 
may have a non-zero velocity, though there are no gradients in the 
circumferential direction.  In these situations, the problem may still be 
computed in two dimensions by solving the transport equations for the three 
components of velocity for a 2-D, axisymmetric geometry.  This can be 
performed by activating the Swirl Flow option. 

Compressibility 

For most low-speed flows, the tendency (time) term in the continuity 
equation has a negligible influence on the overall solution and by default, 
Storm does not include this term in the governing equations.  However, in 
the case of high speed (M>0.3), compressible flows, this is an important 
contribution and hence needs to be included in the simulation.  This 
compressibility term can be explicitly activated from the CFD2000 
Analysis Specifications panel for such flows.  

Viscous Dissipation 

In certain classes of flows, there is a source term in the energy equation due 
to viscous stresses.  By default this effect, called viscous dissipation is not 
included in the energy.  It has to be explicitly activated when viscous 
dissipation effects are significant.   

The Brinkman number, a non-dimensional parameter given by the product 
of the Prandtl and Eckert numbers as 
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is used to determine whether the temperature rise due to dissipation is 
significant. Qualitatively, the Brinkman number represents the ratio of 
dissipation effects to fluid conduction effects; a Brinkman number of order 
unity or larger means that viscous dissipation has to be included in the 
simulation.  

Pressure Work 

The third term on the right-hand side of the energy equation (Eq. 4) is often 
referred to as the Pressure Work term.  This is usually a significant 
influence in high-speed flows with large velocity gradients and hence is not 
included in the energy equation in Storm by default. It can however be 
activated when modeling, for example, compressible flows. 

Transient Pressure term 

For unsteady flow problems involving moving pressure waves, it is 
important to include the effects of the unsteady pressure derivative in the 
energy equation (the second term on the right-hand side of Eq. 4).  This term 
is included in the energy equation in Storm whenever the Unsteady Flow 
option is selected. 

Body Forces 

Body forces in CFD2000 refer to forces that act on the entire mass of the 
fluid element such as gravity.  CFD2000 allows for a number of options to 
include body forces. 

Constant 

A constant force that acts on the fluid over the entire domain may be 
specified with this option. 
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Gravity 

The Gravity option allows the user to specify the value of acceleration due 
to gravity in the appropriate unit system to compute the effective body 
force. 

Buoyancy Forces 

A body force of the form 

F = A(ρ−B)        (106) 

where A and B are constants may be specified using the Buoyancy Force 
option. 

Boussinesq Model 

A special extension of the constant density model is available whenever both 
the heat transfer and gravity options have been activated.  In this situation, 
convective motions can arise even when the density variations are very 
small.  The user can account for this effect while still retaining most of the 
advantages of the constant density model by choosing the Boussinesq force 
option from the gravity boundary condition menu.  When this option is 
selected, density is treated as a constant in the dynamical equations—except 
where it is coupled with the gravitational acceleration.  Thus the body force 
term in the momentum equation (Eq. 1) is cast in terms of a small 
(linearized) density variation about the basic reference value 

 




 −= refTTrefigi βρβ  (107) 

where gi is the component of the gravitational acceleration vector in the ith 
coordinate direction; ρref and Tref are the constant reference density and 
temperature, respectively; and β is the isobaric thermal expansion 
coefficient defined 
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Values for β have been assigned for every fluid in the CFD2000 Fluid 
Material Library.  For gases, Storm uses the ideal gas relationship 

 T/1=β  (109) 

where T is in absolute degrees (either Kelvin or Rankine). 
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 INDEX 

SPECIAL CHARACTERS 

β     See thermal expansion coefficient 

χ-squared particle size distribution     61, 62 

γ     See ratio of specific heats 

ε     See governing equations, turbulent dissipation rate 

κ     See thermal conductivity 

µ     See dynamic viscosity 

A______________ 

absorption coefficient     73 
activation energy (for chemical kinetics)    50, 54 
ADI (linear equation solution method)     19, 21 
alternating direction implicit     See ADI 
Arrhenius formula     51, 54, 55 
arithmetic mean (diffusion coefficient)     14 
atomization     See particle breakup models 
axi-symmetric geometry     74 
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B______________ 

Basset term for particle motion     62 
Bingham plastics     See non-Newtonian fluids, Bingham model 
body-fitted coordinates (BFC)     8 
body forces     3, 75-77 

Boussinesq model     76-77 
buoyancy     76 
constant model     75 
gravity     76 

Boussinesq model     76 
breakup models     See particle breakup models 
Brinkman number     74-75 
buoyancy force     76 

C______________ 

Carreau model 
See non-Newtonian fluid, Bingham model 

Cartesian ooordinates     8-9 
catalytic surface reations     56 
cell faces nomenclature     9 
centered-differencing schemes     13-14, 16 
ceramic coating process     55 
CFL number     22 
checkerboard instability     16 
chemical kinetics     49-50 
chemical potential function     54 
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chemical reaction models     49-57 
equilibrium     54-55 
finite rate     49-51, 55-56 
frozen     55 
instantaneous     53-54 
mixture fraction     52-53 
surface     55-57 
time scales and     49 

chemical vapor deposition     See CVD model 
chemistry     See chemical reaction models 
chi-squared particle size distribution 

See χ-squared particle size distribution 
coalesence (particle)      
      See particle collision and coalescence models 
collision frequency     66-67 
collision (particle)      
      See particle collision and coalescence models 
collision factor exponent, n (Arrhenius exponent)    50, 53 
combustion modeling     52, 56 
compressible flow     28, 41-42, 74-75 
conductivity     See thermal conductivity 
conjugate heat transfer     See heat transfer, solid 
conservation equations     2, 3-7, 8 

See also governing equations 
continuity equation     3 

and compressible flow     74 
contravariant velocities     11-14, 16 
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convective fluxes     11-14, 22 
hybrid scheme     12 
first-order scheme     13 
second-order scheme     13-14 
third-order scheme     13-14 

convection term     8, 10, 11-14 
coordinate systems     8-9 
conjugate heat transfer     70 
control volumes     8-9 
convergence,  techniques for accelerating     24-25 
Courant-Friedrichs-Lewy condition      
      See CFL number 
CVD model     55-57 

D_____________ 

Darcy’s equation     48 
density models 

constant     27 
customized     29-30 
field value     28-29 
ideal gas law     28 
inverse function     29 
linear function     29 
solid     71-72 
user-defined     29-30 
virial     30 

diffusion  
and surface chemical reactions     57 
coefficient     7, 14-15 
thermal-gradient driven mass     56 
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diffusion (cont.) 
Soret     56 
term     8, 10, 14-15 

diffusive fluxes 
arithmetic mean     14 
harmonic mean     15 

diffusivity     5 
dilitant fluid     32, 33 
direct method (linear equation solution method)     20 
drag 

coefficient    62-63 
force     62 

dynamic viscosity, µ     3, 31-38 
Bingham model     32, 35-36 
Carreau model     32, 34 
customized models     37-38 
inverse function model     37 
linear function model     37 
Newtonian model     31, 32 
non-Newtonian models     31, 32-36 
power law model     32, 33-34 
Sutherland model     37-38 
user-defined model     37-38 

E_____________ 

Eckert number     74-75 
energy equation      
    See thermodynamic energy equation 
enthalpy 

for multi-component fluid     4 
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equation of motion for particles     63-64 
equations of state     6, 27-30 
equilibrium chemical reaction model     54-55 
Eulerian particle tracking     58 
expansion coefficient      
     See thermal expansion coefficient 

F_____________ 

finite rate chemistry model     49-51, 55-56 
first order scheme     See convective fluxes 
Fluid Material Property Library     43 
Forcheimer-Brinkman model (for porous media)     48 
frozen chemical reaction model     55 
fuel-air chemical reactions     52 

G_____________ 

“gamma”     See ratio of specific heats 
gas constant     28, 29 
general conservation equation     6-7, 10 
Gibbs energy     52, 55 
governing equations 

energy      4 
general conservation    6-7, 8, 10 
mass conservation    3 
mass fraction     5 
momentum conservation    3 
particle motion     62 
species mass fraction     5 
state     6, 27-30 
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turbulent dissipation rate, ε     5-6, 44-45 
governing equations (cont.) 

turbulent kinetic energy, k     5-6, 44-45 
turbulent production rate, G     6, 45 

Green’s theorem     10 
grids     9, 16 

moving     69 

H_____________ 

harmonic mean (diffusion coefficient)     15 
heat capacity     See specific heat 
heat transfer 

solid     70-72 
high-speed flow     74, 75 
hybrid scheme     See convective fluxes 

I_____________ 

ideal gas law     28 
ILU (linear equation solution method)     19, 21 
incomplete lower-upper factorization     See ILU 
incompressible flow     27 
instantaneous chemical reaction model     53-54 
interfacial fluxes     11-15 

convective     11-14 
diffusive     14-15 

isentropic gas law     28, 41-42 
isobaric expansion coefficient      
      See thermal expansion coefficient 
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J, K_____________ 

k-epsilon (k-ε) turbulence model      
      See turbulence model 

L_____________ 

Lagrangian particle tracking     58-68 
libraries 

equilibrium chemical reaction model     54-55 
finite rate chemical reaction     49-51 
fluid materials     43 
instantaneous chemical reaction model     53-54 
mixture fraction chemical reaction model     52-53 
solid materials     71, 72 
species data     51, 55 
surface reaction chemistry     56, 57 

linear equation solvers     19-21 

M_____________ 

mass fraction  
conservation equation     5 
factor, F    52, 53, 54 

material properties 
gases     43 
liquids     43 
solids     71-72 

mixture fraction chemical reaction model     52-53 
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momentum equation 
for fluids     3-4 
for particles     62-63 

moving grids     69 
multistep chemical reactions     50-51, 55 

N_____________ 

Newtonian fluids     30-31,32 
non-Newtonian fluids     31, 32, 33-36 

Bingham model     32, 35 
Carreau model     32, 34 
power law     32, 33-34 

O_____________ 

operator splitting method 
and finite rate chemistry model     50 

Ostwald-de Waele viscosity model 
See non-Newtonian fluid models, power law 

P_____________ 

particle breakup models     63-66 
particle collision and coalesence models     66-67 
particle phase modeling     59 
particle size distributions     60-61 
particle tracking     See Lagrangian particle tracking 
Peclet number     12 
permeability     48 
PISO solution algorithm     17-18 
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plastics, Bingham     See non-Newtonian fluids, Bingham model 
Poisson equation     17,18 
porous media model     48 
powder     58 
Prandtl number 

laminar     39-40, 74-75 
turbulent     5-6, 46-47 

predictor-corrector methods 
finite rate chemical reaction model     50 
instantaneous chemical reaction model     54 
mixture fraction chemical reaction model     52 
PISO algorithm     17-18, 21 

pressure equation     17-18 
solution methods     20 

pressure-velocity collocation     16 
pressure work     75 
pseudoplastics     32, 33 

Q, R_____________ 

radiation model     74 

ratio of specific heats, γ (gamma)     28, 41-42, 55 
as a field value     42 
for multi-component gas     55 
user-defined model     42 

react1.lib     50, 56 
react2.lib     54 
react3.lib     55 
react4.lib     53 
react5.lib     57 
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reaction collision coefficient, A (Arrhenius coefficient)     50, 53 
reference values 

density     28, 76 
pressure     28 
temperature     28, 38, 76 

Reynolds number, Re (for particles)     63 
Rhie-Chow method     16 
Rosin-Rammler particle size distribution     61 

S_____________ 

Sauter diameter (for particles)     60 
scattering coefficient     73 
second-order scheme     See convective fluxes 
semiconductor device manufacture     55 

silane (SiH4)     55, 56, 57 
SIMPLE algorithm     17 
single step chemical reactions     52-54 
six-flux radiation model     73 
smoke     58 
Solid Materials Property Library     71-72 
Soret term     56 
source  

linearization     10 
term     7, 8, 10 

special terms     74-77 
species conservation equation     5 
species.lib     51, 55 
specific heat     38, 39 

as a field value     38, 55 
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multi-component gas     55 
specific heat  (cont.) 

ratio     See ratio of specific heat  
solids     71-72 
user-defined model     39 

Steffan-Boltzmann coefficient     73 
sticking coefficient     57 
stiff systems of equations     50 
Stoke hypothesis     4 
Stokes dissipation     4 
stress tensor     4, 30 
strain rate     4, 30-35 
surface reaction models     55-57 
swirl flow     74 

T_____________ 

TAB model for particle breakup     63-64 

thermal conductivity, κ     4, 39-41 
as a field value     40 
inverse function model     41 
linear function model     40 
Prandtl number option     39-40 
solid     71-72 
turbulent, κT     46 
user-defined model     41 

thermodynamic energy equation     4-5 
and compressible flow     74 
and radiation     73 

thermal expansion coefficient     41, 76-77 
third-order scheme     See convective fluxes 
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time accuracy     17-18, 24-25 
time step 

and diffusion     23 
and flow speed    22 
and grid size     22-23 

time step options     23-25 
and time-accurate solutions     24-25 
automatic control     24-25 
fixed     23 
growth rate     24 
local control     25 
upper limit     24 
time step factor     24 

transient term     8, 10 
and compressible flow     74, 75 

turbulence model 
applications     46 
governing equations     6-7, 44-45 
particle modulation     67-68 
user-defined     47 

turbulent conductivity     See thermal conductivity, turbulent 
turbulent Prandtl number     See Prandtl number, turbulent 
two-equation viscosity model 

See non-Newtonian fluid models, power law 
two-phase flow     See Langrangian particle tracking 

U_____________ 

ucvddif.f 
Unsteady Flow option     75 
upwind schemes     13-14 
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V_____________ 

velocities, cell-face     See contravariant velocities 
virial equation of state     30 
viscous dissipation     74-75 
viscosity 

bulk     4 
dynamic     See dynamic viscosity 
Newtonian     30-31, 32 
non-Newtonian     31, 32, 33-36 
second     4 
turbulent     44 

VNN     See Von Neumann number 
Von Neumann number     23 

W_____________ 

wave instability model (for particle breakup)     65 
Weber number    65 

X, Y, Z____________ 

yield stress     35 
 


