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PREFACE

STORM/CFD2000 — Theoretical Background is one volume of a multi-
volume documentation set. In addition to this manual, the following
publications are aso included as part of the STORM/CFD2000 software
package:

= The STORM/CFD2000 User Guide explains the basic concepts of
setting up and running cases with CFD2000, describes in detail al
components of the interface, and explains how to build models using the
geometry tools.

=  CFD2000/Fieldview for Windows User Guide describes the standard
three-dimensiona visudization tool included with the
STORM/CFD2000 software package.
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Chapter 1

GOVERNING EQUATIONS AND
SOLUTION METHODS

This chapter describes the CFD theory that forms the basis of Storm, the 3-
D Reynolds-averaged Navier-Stokes solver used in CFD2000. Individual
sections discuss the governing equations, the discretization technique, the
solution agorithm, and the solver methodol ogies employed by Sorm.

Overdl objectives areto:

= Provide insight into the numerical schemes so that you can
understand the performance of the code in terms of stability and
convergence rate

= Establish signposts that indicate when and how you can intervene in the
solution process, and

= |llustrate how the information you provide affects the performance of
the code and the quality of the solution.

An understanding of the numerical implementation of Storm will help you
achieve the ultimate objective—an accurate solution to your flow model.
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Governing Equations

Sormisagenera purpose computer program designed to numerically solve
the Navier-Stokes equations, which consist of conservation equations for
mass, momentum, and energy. In addition, it is capable of solving an
arbitrary number of genera transport equations. The code uses a finite-
volume representation of the governing equations, whereby the continuous
problem domain is decomposed into multiple control volumes, and the
governing equations are applied to individual control volumes and integrated
over the entire computational domain. This algebraic equation set is then
solved using generd and efficient numerical methods to obtain a solution of
the engineering system.

In this section we present the basic equation set used by Storm. No
derivations are presented; for these, the reader may refer to any standard
work such as Landau and Lifshitz (1959). We start by presenting the
differential equations that express the conservation of mass, momentum, and
energy within afluid volume. These equations are intended to be applied to
a single-phase fluid—i.e.,, one that is ether entirely gaseous or entirely
liquid. Interactions between the fluid and any suspended particulate
material of a different phase are accounted for through source terms that
appear in each of the equations.
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Conservation of Mass

The conservation of mass within a small, fixed fluid volume is expressed

I, M(ru;)
1t X

wherer istheloca fluid density, t istime; x; is the position vector in the i"™-
coordinate direction, u, is the i"-fluid velocity component; and Sm‘p

represents the rate per unit volume at which mass is transferred to the fluid
by any of a humber of sources—for example, evaporation of particulates.
By default, Sm‘p is set to zero (desctivated) unless the user explicitly

activates one of the Siorm source term models.

=Smp D

Conservation of Momentum

Newton's second law applied to the fluid passing through a small, fixed
volume leads to the following expression

fru,  fews) T 1o
ﬂt ﬂXi ﬂxi ﬂxi
where B, represents the component of the tota body force per unit volume

(eg., gravity) exerted on the fluid in the i"-coordinate direction; p is the
local thermodynamic pressure; Sui,p is the momentum source/sink term; and

HIBi+ S 2

t is the viscous stress tensor given by

o 0 u
= 42 2, g 3
&Tx;  Txig 3 7 Iy

Here mis the dynamic viscosity of the fluid due to laminar (molecular)
diffusion, and d; is the Kronecker delta function (d; = 1if i =j; d; =0if i *

J). Techniques used by Storm to model mare discussed in Chapter 2, pages
30-38.
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Implicit in Eq. (3) is the conventional assumption of a linear relationship
between the tangential stress and the rate-of-strain tensor (Stoke's
hypothesis). Storm further assumes that the so-called bulk viscosity (or
“second viscosity”) is negligibly small—an appropriate simplification for
nearly all gaseous flows, and most low density liquids (Landau and Lifshitz,
1959).

Conservation of Energy

The first law of thermodynamics applied to the fluid passing through a
small, fixed volume leads to the following conservation equation

. é U
TH SCuH)_ 9 gk HE T P e ghs, @
it 1X; 1X; éCp ﬂxig qt 1X; ’

where H is the local density-weighted mean static fluid enthapy; F is the
Stokes molecular dissipation function defined as

Foget, 0 2 fu ) Gt

= i U—- 5
BET T 3 Txi g )

Q is the rate per unit volume at which heat is added to the fluid; k is the
thermal conductivity; CIO is the mass-weighted mean specific heat at constant

pressure; and 34,,3 is the enthalpy source/sink term.

For multi-component fluids, Storm assumes that the enthalpy H represents
the sum of the enthalpies of each individual component. Thus, in generd,

N
H=a YoH, (6)
n=1
where N is the total number of fluid components in the mixture, Y is the
density-weighted mean mass fraction of the n" species, and H,, is the local
component enthal py as defined by the expression
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T
Hn :Hn,O + C\Pp,ndT (7)
To
where C,  is the specific heat at constant pressure for component n; H,  is
a prescribed reference enthalpy valid at temperature T; and T is the local
fluid temperature.

Conservation of Species Mass Fraction

The conservation of mass fraction Y for component n of an N-component
fluid mixture is expressed
Yy, IruYs)_ 1€ 1,0

It X x SD” ™ g

a*Wn +Syp (8)

where D, and D, ; are the species mass diffusivities (Sl units: kg/m/s) for
component n due to laminar and turbulent motions, respectively; Smp isthe

mass source of species n due, for example, to evaporation from the
particulate phase (inactive by default) or chemical reactions within the flow.

Conservation of Turbulence Quantities

The conservation equations for turbulent kinetic energy k (Sl unit: m?#/s?)
and the turbulent kinetic energy dissipation rate e (n?/<s°) are, respectively:

Tk, flruk) _ 1 & mr @tk U

; G- 9
qIt 9x; ﬂxi% Prkgﬂx grmrG-re++Sp ©

and

ﬂr_e+ﬂ(ruie) ﬂ%e ﬁoﬂe

C G-C 10
T T Prgfx g k( MrG- Core)+Syp (10
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where C; and C, are dimensionless model congtants; Pr, and Pr, are the

turbulent Prandtl numbers for kinetic energy and dissipation, respectively;

Sp ad S,, are source terms for the kinetic energy and turbulent
dissipation; and

. u; 09y, - 0Tu.

ool MU0 1 9 fp 2@k fulfy ),

gTx Txigl W T 3gmr T 5,

is the turbulent production rate (SI unit: s?). Vaues for the various

dimensionless constants used in Egs. (9) and (10) are discussed in Chapter

2, pages 44-46.

Equations of State (Density Models)

The equation of state closes the system of dynamical equations by relating
the fluid density to the other thermodynamic variables. The various options
available to define density are discussed in Chapter 2, pages 27-30.

General Conservation Equation

The conservation equations presented above constitute the basic set of
partial differential equations solved by Sorm. In principle, each of these
equations could be coded separately in discretized form and solved
individually to produce a solution. However, careful observation reveals
that these equations al have a similar form, indicating that each dependent
variable solved by Storm obeys the same generalized conservation principle.
In particular, if we let f denote the dependent variable, it turns out that all
of the governing equations can be reduced to a single convective-diffusive
conservation equation of the form

AR (WCTLDP - S0 AN 1)

fit fix; ixi & X g
where G is the effective diffusion coefficient for quantity f; S is the net
source term; the two terms on the left-hand side are, respectively, the local
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rate of change of quantity f (the time term) and the convection term; and the
first term on the right is the diffusion term.

Sorm exploits the common structure of the governing equations by coding
only one conservation equation, Eq. (12), and then deriving solutions for all
the dependent variables from it. Consequently, Eq. (12) takes the form of a
vector equation with

i Snp U
N . [T |
0 y  fp
il : " :’l : ﬂ_xl ﬂx1+rBl+allp :
- i i e |
i Y1y T m 1 i A —p+rB +S,,p |
Tu 1'|' T T | ﬂXz ﬂXz 2 2P |
i [ [ Mty 9p '
f=iry G=1 KNGy 5=t 30 3 B e y 19
AL S D S T i
.:.Yn.:. :m_‘_ﬁ/: Iﬁ-‘-u x +F+Q+S—|p:
el ! kol ! Wh +Sv,p !
I eb [ mr | i n [
' ¥m+?[} i MG-re++S, |
e 1 e
% E(ClmTG' Czr e)"-Se,p b

for the dependent variable vector, the effective diffusion vectors, and the
source term vector. Here the first element in each vector corresponds to the
continuity equation as given by Eq. (1); the second, third, and fourth
elements correspond to the three components of the momentum equation; the
fifth element corresponds to the energy equation; the sixth element
corresponds to the species mass fraction equation; the seventh element
corresponds to the turbulent kinetic energy equation; and the eighth element
corresponds to the turbulent kinetic energy dissipation rate equation. Note
that when written in this format, the source vector includes al terms in the
governing equations that cannot be represented as contributing to either
convection or diffusion.



Theoretical Background

Control Volume Formulation

The finite-volume discretization employed by Storm uses an integral form of
the general conservation equation Eq. (12). Thisinvolves dividing the entire
computational domain into a series of small, eementary control volumes
(cells) over which the integration is carried out. Curvilinear coordinates
(either orthogonal or body-fitted) can be used to define the cells.

General Transport Equation

As stated previoudly, for a general variable f the transport equation can be

written as
wf  ruf) 7 é. U
L el b AL < ¢ s 14
TR PR v S R (9
M (© (D) S

where G is the effective diffusion coefficient and S; is the source term. The

four terms in this transport equation (as indicated above) will be referred to
in subsequent sections as the Transient term (T), the Convection term (C),
the Diffusion term (D), and the Source term (S).

Coordinate System

All the previous sections have considered the conservation equations to be
written for a Cartesian coordinate system. To simulate three-dimensional
flows interacting with complicated real-life geometric surfaces, these
equations are usualy transformed from the Cartesian system (X, y, z) to a
generalized non-orthogona curvilinear coordinate system (x, h, z). This
coordinate system defines the computational plane and is usually referred to
as the body-fitted coordinate (BFC) system. The transformation makes it
possible to solve the governing equations on a uniformly spaced grid in the
computational plane, even though the physical grid is curvilinear in nature.
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CFD2000 offers the capability to solve the governing equations in both
Cartesian and body-fitted coordinate systems.

Cell Face Nomenclature

Sorm requires that every cell comprising the computational domain be
hexahedra—i.e., a six-sded, planefaced volume. A schematic
representation of such a cell is shown in Fig. 1.1 below. By convention,
each face is labeled according to a right-handed “geographical” scheme in
which the “east” face (labeled “€’ in Fig. 1.1) is assumed to lie in the
genera direction of the principal coordinate axis (usualy the X-axis)
relative to the cell center; the “north” face (n) is assumed to lie in the Y-axis
direction; and the “high” face (h) lies above the cell center in the Z-axis
direction. Faces labeled w, s, and | (for “west,” “south,” and “low,”
respectively) are defined relative to these, and the point at the geometric
center of the cell is labeled P.  The centers of the neighboring cells
surrounding cell P are likewise labeled N, S, E, W, H, and L, asindicated in
Fig. 1.1.

H

Figure1.1 Numerical stencil in Storm.
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Discretization of the Transport Equation

The governing equation is discretized following the procedure described in
Patankar, 1980. Essentially, this consists of integrating the governing
equation over the control volume shown in Figure 1.1 (previous page). The
volume integrals are converted to surface integrals for the control volume
using Green's theorem; the individua fluxes at the faces of each cell are
then estimated using appropriate interpolation practices.

Integrating over the volume v of an individua cell and applying Green's
theorem, the integral forms of the individual termsin Eq. (12) become

Transent Tem: T = C‘Q‘fﬂ%dv = V(f new fo'd)/Dt (15)
\Y

Convection Term: C= GggiN( Vf ))av = gfr Vi Jda= & rviA  (16)
v A AllFaces

Diffusion Term: D = cggfN(GNf ))dv = ggfalf )da = § (GRFA) (17)
vV A AllFaces

Source Term: S= s av = Ve (f, - f) (18)
\%

where f9d, "W yefer to the value of an arbitrary quantity a two time
levels, V is the velocity vector; V is the cdll volume, dA is the differentia
area of a call face; C; is a source linearization coefficient; and f , is a

constant.
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Interface Fluxes

As is evident from the previous section, the convection and diffusion flux
for each variable at the cell face has to be estimated based on the values of
the variable at the neighboring cell center. A number of practices are
available to interpolate for the interfacial fluxes.

Convection Flux

The convective contribution to the local rate of change of quantity f within
the control volume illustrated in Fig. 1.1 can be expressed

C=Gfo- Gufy +G,f - Gf +Gpfp - Gof o (19)

where, for example,

Ge =r eueAe (20)
denotes the mass flux of fluid crossing the east cell face; Ag is the face area;
reand f o are, respectively, the density and the scalar variable value defined
at the geometric center of the face; and ug is the magnitude of the velocity

field oriented perpendicular to the cell face (the contravariant velocity).
Similar definitions apply to quantities defined at the west, north, south, high,
and low faces as well.

Sorm offers a sdection of schemes for formulation of the convection
contribution to the coefficients in the finite-volume equations. The schemes
described briefly include:

= Hybrid Scheme
= First-Order Upwind Scheme
= Higher-Order Upwind Schemes

11
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Hybrid Scheme

The hybrid scheme (Spalding, 1972) compares the relative magnitudes of
convective and diffusive transport at each cell face to determine whether the
neighboring cell is effectively downstream or upstream. The Peclet number
(theratio of diffusive to convective time scales) is then used to determine the
coefficient that represents a reasonable approximation to the exact solution
of alocal, one-dimensional, convection-diffusion flow.

Under this approach, the coefficient for the east neighbor (for example) is

GeZM%

where C, is the convective contribution at the east face, defined by Eq. (19),
and D, is the diffusive contribution at the east face, defined

6 C
1Dei' .

—e (21)
g 2

De = ﬁ (22)
dxe
where (dx) denotes the distance between the cell center and the center of the
neighboring “east” cell.
The hybrid scheme is most useful for low-speed flows in which diffusive

effects are important. More detailed information about this scheme can be
found in Patankar (1980).
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First-Order Upwind Scheme

The first-order scheme (Courant, Isaacson, and Rees, 1952) is based upon
the assumption that the convected property value at the cell face is that
prevailing within the cell on the upwind side. Its stability makes it a
desirable choice whenever convection effects fully dominate diffusion effects
(i.e., for high Peclet numbers). For example, the east neighbor coefficient is
calculated as

G, =Max- C,,0)+D, (23)
where C, and D, are defined as in the hybrid scheme.

The first-order scheme offers the advantage of being smple and efficient.
Of all the schemes included in Sorm to compute convective fluxes, the first-
order upwind scheme uses the fewest computational resources.

Second- and Third-Order Upwind Schemes

In order to reduce the numerical diffusion associated with the first-order
upwind scheme, severa higher order schemes have been developed. Storm
offers two: a second-order upwind scheme, and a third-order upwind
scheme.

For both higher-order upwind schemes, centra differencing is used for the
diffuson term. The main difference is in the convection term trestment.
Unlike the first-order upwind scheme, which uses only one upstream cell
value, higher-order schemes use more points to construct the convection flux
asfollows:

(higher - order flux), = (first- order flux),

] ) @) . (24
+(1’;h)dfg i (1’;h)df(; + o - (14h)df(;e @9

(L- h)
4

where df_e+, d?é , d?W“L, and d_f—ee are the “limited slopes’ on thew, e and ee
faces, and n is a parameter that determines the order of the scheme. In

13
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particular, if n = -1, this scheme is second order; if n = 1/3, the scheme is
third order.

For both second- and third-order schemes, extra cells (such as eein Eq. 24)
are brought into the discretized equations, and a “minmod” filler is used to
suppress unwanted oscillations (Yee, 1989). To maintain the same band-
width as that of the first-order scheme, the “limited dopes’ are treated
explicitly and are combined with the rest of the source terms in the
corresponding equations.

Diffusion Flux

The transport coefficient information required for evaluation of the diffusion
fluxes is stored at the center of the computational cells. However, diffusion
fluxes are required at the cell faces, therefore interpolation is required to
evaluate the transport coefficient at those locations.

Sorm offers two interpolation options: the arithmetic mean and the
harmonic mean.

Arithmetic Mean

This option employs a straightforward linear interpolation of cell-center
values to estimate the effective diffusivities at the cell faces. The transport
coefficient at the east cell face e, for example, is obtained from the values
prevailing at cell center points P and E as follows:

Ge :feGP +(1' fe)GE’ (25)

where f4 is a linear interpolation factor. Similar expressions are coded for
the evaluation of the transport coefficient at the other cell faces.

The arithmetic mean should be used whenever the spatia variations of the
transport coefficient are known to be smooth. Although similar results
would be obtained using the harmonic mean (described below) in these
situations, the arithmetic mean is preferred due to its smplicity and
computationa efficiency.
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Harmonic Mean

The second interpolation option evaluates the transport coefficient at the
east face as

e
G g

This option should be used whenever the transport coefficient exhibits
abrupt spatial variations in the domain. This interpolation scheme is

somewhat more computationaly expensive, but necessary to ensure the
correct evaluation of the diffusion fluxesin highly non-uniform flows.

A-f
G=6—°2 26

15
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Sorm uses a collocated grid arrangement, in which all velocity components
are stored at the centers of each computationa cell. Compared to staggered
grid schemes, in which flow velocity components are stored at the faces of
each cell, this approach results in a considerable savings in computational
memory requirements. For example, in a three-dimensiona problem, a
staggered grid scheme requires that the mode must store geometric
information for four sets of control volumes—one main set for the cell-center
values, and one for each of the three velocity components. Collocated grids, on
the other hand, required only one set, since all variables are carried at cell
center.

However, this memory-saving does have its drawbacks. Primary among these
is the tendency for the pressure and velocity fields in adjacent cells to become
decoupled when using collocated schemes (Patankar, 1980). Thisresultsin a
so-called “checkerboard” instability, which over time can spoil your solution.

To aleviate the possibility of "checkerboarding” while still retaining the
advantages of the collocated scheme, Storm uses an approach similar to that
introduced by Rhie and Chow (1983), and subsequently refined by Peric et al.
(1988) and Chen et al. (1991). This approach, generally referred to as the
Rhie-Chow method, employs a specialized formula for computing the cell-face
(contravariant) velocity components. This formula corrects the usual “2Dx”
interpolated pressure gradient term based on cell-center pressures with a 1Dx
centered-difference form based on the pressures in adjacent cells. For the
east-face velocity, the effective formulais

. ePe Py aqp
U, =T+A {e—EDX b_ &g, @7)
: o

where u, is the east-face velocity in the x-coordinate direction, A is a
coefficient that depends on the local fluid state and the grid geometry, and the
overbars indicate linear interpolation between the E and P cell centers. This
procedure produces a strong pressure-velocity coupling and effectively
suppresses the checkerboard instability.
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PISO Solution Algorithm

Sorm uses the PISO (Pressure Implicit with Splitting of Operators)
algorithm developed by Issa (1985) and Issa et al. (1991) to solve the
coupled system of governing equations. This method, part of a general class
of implicit pressure-based solution techniques, employs a series of
sequential operations at each time step in which the discretized momentum
and pressure-based continuity equations are solved in an aternating
“predictor-corrector” fashion. This approach offers a firm advantage over
many other schemes (most notably, the SIMPLE method [Patankar and
Spalding, 1972] and related schemes), in that it achieves a mass- and
momentum-balanced, time-accurate solution for the velocity and pressure
fields in just a few “passes’ per time step, without resorting to either
iterative and block-solution techniques.

As implemented in Storm, the PISO scheme is carried out in siX steps.
These are described as follows.

Step 1—First predictor step for momentum

Starting with the u, v, and w velocity components and the pressure field p
from the previous time step (or, if the solution is just starting, from the
initial conditions), advance the discretized explicit form of the momentum
equation one time increment Dt. Then, using the predicted velocity
components u*, v*, and w*, advance the energy and species concentration
equations one time step as well, if necessary.

Step 2—First predictor step for pressure

The velocity field obtained in the first step will not, in general, satisfy the
requirement of mass continuity. Therefore, using the Poisson (dliptic)
equation for pressure derived by combining the momentum and continuity
equations, predict a pressure field p* that is mass-consistent with u*, v*,
and w* everywhere in the domain. Use this pressure and the updated
temperature T* derived in Step 1 to update the density as well, if necessary
(compressible flow), using whatever equation of state has been selected.

17
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Step 3—First corrector step for momentum

Use the predicted pressure p* and the density r * obtained in Step 2 in the
discretized momentum equation to obtain a set of corrected velocity
components u**, v¥* and w**. Then use these corrected fields to update
the energy and species conservation fields, if necessary.

Step 4—First corrector step for pressure

Solve the dliptic pressure equation using u**, v**, and w** once more to
obtain a corrected mass-balanced pressure field p**. Update the density as
well, if necessary, using the same technique asin Step 2.

Step 5—Second corrector step for momentum

Use the corrected u**, v**, and w** fields obtained in Step 3, together with
the corrected pressure p** from Step 4 in the momentum equation to arrive
a the find velocity fidd u***, v*** and w***. Also, if the energy and
Species concentration equations are being solved, use u***, v*** and w***
to update these fields as well.

Step 6—Advance to the next time step

At this point, the velocity components u***, v*** and w*** and the
pressure field p** simultaneoudly satisfy both the mass and momentum
balance requirements. Therefore, advance the time step Dt one increment,
assign the final fields u***, v*** w*** gnd p** to the previous (old) time
step level, and repest the entire process from the beginning (Step 1).
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Linear Equation Solvers

Finite-volume discretization of the governing equations produces a set of
algebraic equations. For a 3-D problem, the size of this system can be quite
large. However, because the computational stencil is limited to the cells
surrounding a given cell, most of the entries in the system are zero, yielding
a sparse matrix.

Strictly speaking, the agebraic equations are not linear in nature, because
the coefficients themselves are functions of the dependent variables (for
example, the velocity components appear in the convective contributions to
the coefficients). The algebraic equations are linearized by “freezing” the
coefficients in order to permit the use of linear equation solvers.

Numerous algorithms have been developed for linear sparse systems. They
are essentially divided into two categories:

= Direct methods, and
= |terative methods.

Each approach has advantages and disadvantages, and for every problem
there is an optimum choice. Storm offers a direct solver algorithm and two
iterative solver algorithms: the Alternate Directions Implicit (ADI) method
and the Incomplete Lower-Upper (ILU) decomposition method.

This section briefly describes each of the methods available.

19
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Direct Method

The direct linear equation solution method solves the linearized system of
equations, which in matrix notation can be represented as AX = B.

To accomplish this goal, the matrix A isfirst arranged into a banded format
with the bandwidth chosen to minimize the storage and computer execution
time required. For example, in atwo-dimensiona problem with dimensions
idm by jdm, the equations would be ordered:

= |n columns when idmis smaller than jdm
= By rowswhenidmisgreater than jdm.

Next, the matrix A is expressed by way of a lower-upper decomposition
such that A= LU.

The solution of AX = B then reduces to a forward eimination, LY = B, and
abackward substitution, UX =Y.

An important consideration in this approach is the fact that for two different
systems of equations, the same LU decomposition can be applied as long as
the matrix of coefficients A remains unchanged, even if matrix B is
different; thus LU need not be recalculated, thereby saving computer time.
This advantage is exploited intensively in Sorm whenever possible. For
example, the same LU decomposition applies to both (first and second)
pressure corrector steps.

The direct method is very efficient for small bandwidth matrices. It is
therefore recommended for most one- and two-dimensional problems. It is
also recommended for three-dimensiona problems that have small values
for any two of the three dimensions (for example, 5 x 5 x 100). For full
three-dimensiona problems, however, the storage and the computational
costs associated with the direct method tend to be prohibitive and its use is
not recommended.
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Alternating Direction Implicit Method

The Alternating Direction Implicit (ADI) method is a semi-iterative method
in which the equations are solved a each step by maintaining full
implicitness in one direction at a time, while relaxing the requirement in the
other two directions (Peaceman and Rachford, 1955; Douglas, 1955). For
each direction a tri-diagona linear system results that can be solved very
efficiently. This method is recommended for all equations solved by Storm
except for the pressure equation used in the PISO solution agorithm. This
limitation arises from the observation that ADI methods often perform
poorly for ill-conditioned eliptic systems like that produced by the pressure
equation (see, for example, Anderson et al., 1984, pp.136-37).

Incomplete LU Factorization Method

The incomplete factorization method (aso cdled the incomplete LU
decomposition) attempts to follow the LU decompostion of the direct
solver, while maintaining the sparseness of the L and U matrices to save
storage (Meijerruk and van der Vorst, 1981). Thus, A is again decomposed
as LU, but only the non-zero locationsin A are retained in L and U, making
the decomposition “incomplete”’ or “approximate.”

For instance, in a two-dimensional situation with a five-point stencil, the
matrix A isgiven by

(Au)i,j =apu tagu,; tau,; tagy i, tagy (28)

In this case, the L and U operators are given by
(Lu)i,j = bpui,j + bNui—l,j + bSui,j—l (29)
(Uu)i,j =U + Gl FCU iy (30)

This method is recommended for solution of the pressure equation for full
three-dimensional cases. It typically performs better than ADI because of its
greater simultaneous implicitnessin all three directions.

21
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Storm uses a time-marching algorithm to obtain a solution. The size of the
time step used to advance the calculation is therefore of paramount
importance for the stability and convergence characteristics of the code. In
this section, the mathematical consequences of user-entered data are
discussed.

Stability Consideration

The Strength of Convection Effects

The governing equations of unsteady fluid flow are a mixed set of
hyperbolic-parabolic equations. The inviscid part of the equations is
hyperbolic, and the time-step size is usualy characterized by the
nondimensional Courant-Friedrichs-Lewy (CFL) number, which specifies
the propagation of disturbances in the flow field. The CFL number is
defined

crL = et

(31)

where U, is the local velocity in each cell, Dt isthetime step, and Dx isthe

cell size. As aresult, for a user-specified CFL number, a time step size is
associated with each cdll in the domain, defined

_ Dx>(CFL)

Dt = 32
CFL U (32)

C

Note that Dt~ is inversely proportional to the flow speed and directly

proportional to the cell size. For one-dimensional flows, CFL = 1 isusualy
an appropriate choice, whereas for two-dimensiona flows, a somewhat
smaller value (for example, CFL = /(2 = 0.707) may be required.
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Diffusion Effects

The steady-state governing equations are elliptic in the viscous region, and
the stability of the scheme is dictated by the nondimensional Von Neumann
Number (VNN). In Sorm, this criterion is also used to characterize the
time scale of the viscous part of the unsteady equations.

The Von Neumann Number is defined
C:Dt

VAN ==

(33)

where G is the effective diffusivity (Sl unit: kg/m/s) and r is the density.
Thus, the time step size based on this criterion is defined

_ D {VNN)r
G

Thus, Dty is directly proportional to the square of the local cell size, and
inversely proportional to the effective diffusivity.

Dl (34)

Time Step Control

To control the size of the time step to be used during the course of the
calculation, you can choose from three basic options: fixed time step size,
automatic time step size, and local time step size.

Fixed Time Step Size

With this option, you can define a single time step value for the entire
calculation, or a set of predetermined values that are applied at intervals that
you specify. Select this option if you know in advance the time-step values
that will meet the stability and convergence requirements of the flow
situation under study.

23
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Automatic Time Step Size

With this option you instruct Storm to determine time step values as the
solution progresses. Storm takes into consideration the local characteristics
of the flow to determine the adequate size of the time step according to
stability criteria that you specify. In determining the optimum size of the
time step, the code takes into account the following factors:

=  Growth Rate

As a built-in safety measure, the time step size growth from one time step to
the next one is not alowed to exceed 3 per cent. Thus, the new time step
size according to this consideration is defined as

Dtgrowth = 1'O3Dtold (35)

= Upper Limit

There is aso a user-specified maximum time step size that Storm observes
in determining the size of the next time step to be adopted. At each cycle,
the size for the next time step is set to

Dt = Min(Dtch Dy s Dtgroutn s Dtm) (36)

= Time Step Factor

A time factor is used to advance the solution of one variable at a different
rate than the one dictated by the time step size described before. Thus, by
using numbers less than one but greater than zero, you can dow down the
convergence rate of a given group. On the other hand, using factors greater
than unity will work as a convergence accelerator within the limits of
stability and convergence of the flow.

Because these factors are applied to the true transient term of the
conservation equations, they represent a fictitious and hence false time-
advancing device. Thus, athough the final solution should be independent of
these settings, their use may prevent arriving at a time-accurate solution. In
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other words, these factors should be used mainly for time-independent
solutions where time accuracy is not essential.

Although time-accurate solutions are possible for specia cases—with
careful interpretation—the user should be very cautious when using this
technique in attempting time-accurate calculations.

Local Time Step Size

The local time step option is similar to the automatic option, except that
rather than using the same Dt for dl cells in the domain, Dt is alowed to
vary on a cell-by-cell basis, based on the local CFL or Von Neumann
criterion. The local time-step option can yield faster convergence rates for
steady-state flows as each cell will be driven towards steady-state with its
maximum allowable time step. This option should be used only when time
accuracy of the flow solution is not of importance.

25
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Chapter 2

PROPERTY AND PHYSICAL MODELS

Sorm can simulate a wide variety of gases and liquids, as well as their
thermal interactions with many solids. These materials are distinguished
from one another by several parameters that characterize their distinctive
properties. These include (for fluids) the density r, laminar viscosity m the
specific heat Cp, the thermal conductivity k (heat transfer option specified),
and the thermal expansion coefficient b (incompressible fluid option
specified). The methodologies available in Sorm for modeling each of these
guantities are discussed below.

Density

CFD2000 offers a number of choicesto model the density, which may either
be specified as a constant value, or prescribed as a function of temperature
and pressure, or determined through the use of a custom model. The options
available in CFD2000 are detailed below.

Constant Density

The constant density model may be used for flows where the density is
invariant or has very small spatia variations—such as liquids and low-
speed, isentropic gas flows. This effectively decouples the density and
pressure fields, allowing Storm to attain faster convergence.

27
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Ideal Gas Law

The ideal gas law may be used for gas flows where the heat transfer option
has been chosen. Theideal gas equation is

P Py (37)

0

Roase! *Tref 2
where T and p,, define a reference thermodynamic state and R, g =
R*/mg,g IS the specific gas constant, where R* = 8.314 JK/mole is the

universal gas constant and my,, 4is the gas molecular weight (kg). The ideal

gas law couples the temperature and velocity fields through the density
variable. Note that this option is only available when the heat transfer
option has been activated in the model.

r =

I sentropic Gas Law

The isentropic gas law may be used when the system is adiabatic (no heat
transfer) but density is a function of pressure. In this case, density is
modeled

1/9

ép+p. . U
a_ ey (38)

@ Pabs H
where gis the mass-weighted ratio of specific heats (Cp/CV) at the reference

pressure and temperature, and r . P, ae the absolute density and
pressure for the basic thermodynamic state of the system.

r=r
abs

Field Value

When the homogeneous gas phase is a mixture of various gaseous species,
as in chemically reacting or multi-species flows, it is necessary to compute
an effective molecular weight for the homogeneous phase before applying
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the ideal gas law. The Field Value option automatically computes the
effective molecular weight as

X (39)

1M

Mesr i

[EEN
Il Qo2

where X, and M, are the mass fraction and molecular weight of the i

species, respectively.  From the effective molecular weight, density is
estimated using the ideal gaslaw as

M efr P
RT

r =

(40)

Customized Density Models

In addition to the above-mentioned options available for density, Storm aso
allows the user to define customized models for density. Three options are
available from the CFD2000 interface:

*= Linear Function
Density can be described as a linear function of any Storm scalar variable
r=af +b (41)

where aand b are user-defined constants and f s the dependent variable.

= |nverse Function

This option alows the user to define density as an inverse function of a
Sorm scalar variable
A

42
B + Cf (42)

where A, B and C are user-defined constants and f is the dependent
variable.

29
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= General User-Defined Model

Y ou can also define density as an arbitrary user-defined function
r= f(fi,x,t}| =1..n (43)

where fj is any dependent variable, x denotes the physical space coordinate,
andtistime.

The user-defined model can be particularly useful, for example, in situations
where the ideal gas law is not vaid, such as in high-pressure gas flows. In
such cases a second-order virial equation of state of the form

r = P (44)

- ap- bp28
GAST ap bpé

might be more appropriate, where a and b are fluid-specific coefficients that
can be specified directly from the CFD2000 interface.
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Viscosity

The laminar viscosity coefficient controls the rate a which momentum is
redistributed within the fluid due to molecular (i.e., diffusive) motions. Itis
an intrinsic fluid property whose value specifies the correlation between the
applied tangential stress t;; on the fluid and the resulting rate of shear

(deformation) G.

Newtonian Model

For gases and most pure liquids, the relationship between tangentia stress
and shear strain islinear, as expressed by Newton's law of viscosity
t. =t. =nG (45)
1) JI
where the molecular viscosity mis a function of only the thermodynamic
dtate of the fluid (e.g., pand T), and
o qu Tu j
=it (46)
fx; T
isthe rate of shearing strain (or strain rate). Fluids which obey Eq. (45) are
said to be Newtonian. By default, al of the fluids contained in the CFD2000
Fluid Material Library are assumed to be Newtonian, and are assigned a
constant viscosity mvalid at a single reference temperature.

Fluids for which the shear stress is not directly proportional to the strain
rate are known as non-Newtonian fluids, discussed in the following section.
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Non-Newtonian Models

Many liquids, including plastic melts and some suspensions and solutions,
display a more complicated, nonlinear relationship between the applied
stress and their observed strain rate. In these fluids, some mechanism other
than molecular diffusion contributes to the shearing motion and, as a resullt,
the use of alaminar viscosity independent of the rate of strain is no longer
valid. Such fluids are called non-Newtonian fluids.
shows the relationship between stress and strain for a Newtonian fluid and

some classes of non-Newtonian fluids.

Shear Stress, t

Figure2.1 Sress-strain relationships for non-Newtonian fluids.
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Power Law Model

The power law model (also known as the Ostwald-deWade, or two-
parameter model) is the most general of Storm’'s non-Newtonian viscosity
models. It assumes that the laminar viscosity m can be expressed as a
continuous function of the strain rate according to the formula

m=AGE "1 (47)

where B is a dimensionless constant called the power-law index, and A isan
empirical coefficient known as the consistency factor (S units: Pa/s® or
kg/m/sB), which serves as an index of how viscous the fluid is. Note that
for B = 1, EqQ. (47) reducesto Newton's law (Eg. 45) with A = m Thusthe
deviation of B from unity indicates the degree of non-Newtonian behavior of
thefluid. Specifically, when B < 1, the fluid is said to be pseudoplastic and
the viscosity is found to decrease with increasing strain. On the other hand,
when B > 1, the fluid is said to be dilatant and the viscosity increases with
increasing strain. Dilatant fluids are generally much less common than
pseudoplastic ones. Examples of several pseudoplastic fluids involving
solid suspensions in water are given in Table 2.1 below.

Table 2.1 Non-Newtonian power law parameter for various fluids at 300K. a

A B
FLUID COMPOSITION (% weight) (kg/m/sB)
4.0% paper pulp in water 200 0575
3.0% carboxymethylcellulose (CMC) in water 9.29 0.566
33% lime in water 719 0171
23.3% lllinois clay in water 556 0.229
1.5% CMC in water 313 0.554
54.3% cement rock in water 251 0.153
0.5% hydroxyethylcellulose in water (293K) 0.84 0.509
0.67% CMC in water 0.304 0.716

@ Sources: Bird, Stewart, and Lightfoot, 1960; Tanner, 1985
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Note that when B<1, Eq. (47) predicts infinite viscosity as the strain
becomes vanishingly small, and zero viscosity as the strain becomes very
large. Despite these limitations, the power law model is nevertheless widely
used due to its simplicity, and proves adequate for many common flow
problems.

Carreau Mode

The Carreau model is based on the observation that many fluids that
otherwise display pseudoplastic behaviors a moderate shears become
approximately Newtonian when the strain rate is very large or very small
[Carreau, 1972; Tanner, 1985]. The functional form of the Carreau model
used in Sormis

/2

m=m, + (m0 -m, )gH (AG)ZE(B _ (48)

where m, and m are the asymptotic viscosities at large and small strain

rates, respectively; and A and B are fluid-specific constants determined, for
example, by plotting the observed viscosity as a function of strain rate on a
log-log plot. The Carreau model is particularly well-suited for certain
dilute, agueous, polymer solutions and melts [e.g., Tiu and Tam, 1989].
Table 2.2 below lists representative model parameters for severa Carreau
fluids.

Table 2.2 Non-Newtonian Carreau model parameters for various fl uids.2

mg My A B
FLUID kg/m/s kg/m/s S'l -
Phenoxyl-A at 485K 12400. 0. 744 0.728
High-density polyethylene at 443K 8920. 0. 158 0.496
5% polystyrenein Aroclor 1242 101. 0059 084 0.380
0.75% Separan-30 in 95/5 mixture
(by weight) of water/glycol 10.6 0010 804 0.364

@ Spurce; Tanner, 1985.
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Bingham Fluid Model

Bingham fluids (also called Bingham plastics) include a broad range of real
liquids that display afinite yield stress. Common examples include dlurries,
paints, and suspensions of clays in water. Storm uses a model based on the

Perzyna hypothesis
1AM

m= Min_,’_ tyield , (49)
1my t——
| G
where A is an arbitrary, dimensionless multiplier supplied by the user
(typically, A = 10° ~ 10°), my, isthe viscosity in the limit of very large strain
(the fully plastic limit), and tyield is the yield (threshold) stress for
deformation. Equation (49) indicates that the materid is essentialy
Newtonian at very low strain rates (although the viscosity is very high), and
becomes plastic once a threshold shear is exceeded (See also Fig. 2.1). This
artifice is introduced so that the stress can be modeled as a piecewise

continuous function of the strain rate, without the discontinuity inherent in
“pure” Bingham plastics at the yield point.

——t
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Table 2.3 Non-Newtonian Bingham model parameters for aqueous
nuclear fuel slurries

voLumg  PLASTIC i
FRACTION VISCOSITY YIELD STRESS
SOLIDS my/m, tyieid
SUSPENDED MATERIAL ng'{'E?W - - N/m”
UO,, Coase Thin 03 221. 58.2
(Dp=14mm, Medum 05 8100. 449.
s=17)c Thick 0.7 297000. 1730.
ThO,, Vay Fine Thin 03 1340. 1420.
(Dp=0.03 mm, Medum 05 163000. 6590.
s=27) Thick 0.7 19800000. 18100.
ThO,, Coarse Thin 03 36.6 427
(Dp =24 mm, Medum 05 403. 198.
s=17) Thick 0.7 4450. 542.

a Source: Bird, Sewart, and Lightfoot, 1960, Table 1.2-1. b\/iscosity relative to
heavy water at the same temperature and pressure. CLognormal particle size
distribution parameters, where Dy, is the mean particle diameter and s is the
nondimensional standard deviation about the mean.

Examples of the Bingham parameters and tyield for two aqueous durries are
presented in Table 2.3 above. Note that these parameters depend not only
on the “thickness’ of the durry (expressed here in terms of the volume
fraction of the suspended solid particles), but also upon the mean size and
the size digtribution of the particles themselves.
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Customized Viscosity Models

In addition to the above viscosity modds, Sorm aso allows the user to
define customized models. Three options are available from the CFD2000
interface: alinear function, inverse function, or general user-defined modd.

= Linear Function Model

Viscosity may be defined as a linear function of a Storm-computed or stored
variable
nm=af +b (50)

where aand b are user-defined constants and f s the dependent variable.

= |nverse Function Model

Viscosity may aso be described as an inverse function of any dependent
variable
a

b+ cf

(51)

where g, b and c are user defined constants and f is the dependent variable.

=  General User-Defined Model

Under this option, viscosity may be defined as an arbitrary user-defined
function

m=f(f,xt) (52)

where f is any dependent variable, x denotes the physical space coordinate,
andtistime.

A constant viscosity approximation is appropriate for many fluids and flow
conditions. However, for gas flows in which large temperature fluctuations
are expected, it may be more appropriate to employ the user-defined laminar
viscosity option and account for the temperature dependence explicitly. For
example, one could use Sutherland’s equation and compute the laminar
viscosity according to the relation
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oTref * A?;e T

: (53)
refg T+A &T,

m(T) =
o 5

where m(T ¢f) is the viscosity at the reference temperature T, and A isa

gas-specific constant (Sutherland's constant) with units of absolute
temperature.

Specific Heat

The specific heat at constant pressure Cp is an intrinsic material property
(S units: Jkg/deg K) which must be specified whenever the hesat transfer
option is selected. CFD2000 provides various options to prescribe Cp.

Constant Value

By default, Storm assumes that C,, is constant and uniform throughout the
flow, with a value either specified by the user or consistent with the fluid
selected from the Fluid Material Property Library.

Field Value

When the homogeneous gas phase is a mixture of various gaseous species—
as in chemically reacting flows or multi-species flows—it is necessary to
compute an effective specific heat for the homogeneous phase. The Field
Value option automatically computes the effective specific heat as:

N
Co, ff :iilxi Coi (54)

where x; and C,; are, respectively, the mass fraction and the specific heart
of the it species.
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General User-Defined Specific Heat Model

However, for flows in which the temperature varies over a wide range, it is
recommended that the user supply a customized expression for C.. Storm
alowsfor CIO to be defined as an arbitrary function of the form

Cp= f(f,xt) (55)

where, for example, f may represent temperature and pressure.
Temperature-dependent CIO models for various gases can be found, for

example, in Van Wylen and Sonntag [1976] or Potter and Somerton [1993].

Thermal Conductivity

The thermal conductivity k is an intrinsic material property (S units:
w/m/deg K). CFD2000 provides various options to define the thermal
conductivity of a fluid or solid. In many practical cases, the thermal
conductivity is either a constant or afunction of temperature.

Constant Value

Sorm assumes thermal conductivity, by default, to be uniformly distributed
with a constant value either supplied by the user, or consistent with the
particular fluid/solid chosen for the simulation. Values of k for the fluidsin
the Fuid Material Property Library are vaid a a single reference
temperature and pressure—usually 300K and 1 atm.

Prandtl Number

CEDZ2000 also offers the option to specify a Prandtl number Pr for the flow.
If this option is chosen, then the thermal conductivity is computed from the
Prandtl number as

nC

k=—"©>P
Pr

(56)
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Note that this option requires that the Heat Transfer option be specified
(and, therefore, that CIO be defined).

Field Value

When the homogeneous gas phase is a mixture of various gaseous species,
as in chemically reacting flows, it is necessary to compute an effective
thermal conductivity for the homogeneous phase. The Field Value option
auto-matically computes the effective thermal conductivity of the fluid based
on the molecular weights and congtitution of the individual species in the
mixture as

N
keff = i X.k. (57)

where X; and k; are the mass fraction and thermal conductivity of the i
Species, respectively.

Thermal conductivity usually varies with temperature, so in cases where the
temperature varies significantly, the user may prefer to activate one of the
model options from the Thermal Conductivity options subpanel and
prescribe a smple temperature dependent model. CFD2000 offers the
following choices:

= Linear Function

Thermal conductivity can be defined as a linear function of any Storm
scalar variable
k =Af +b (58)

where A and b are constants and f is the scalar variable. Temperature-
dependent conductivity models for various gases and liquids can aso be
found, for example, in Weast (1987).
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= |nverse Function

Thermal conductivity may aso be defined as an inverse function of a Storm
scalar variable as

a
b+fc

(59)
where a, b and ¢ are user-defined constants and f is the scalar variable.

=  General User-Defined Conductivity Model

Therma conductivity may also be defined as an arbitrary user-defined
function

k=f{,xt) (60)

where f is any dependent variable, x denotes the spatial coordinate, and t is
time.

Thermal Expansion Coefficient

Sorm assigns fixed default values for this parameter valid at 300 K for
most fluids. The user may specify a vaue for the therma expansion
coefficient or decide to use the value for a particular fluid type from the
Fluid Materia Property Library.

Ratio of Specific Heats

The ratio of the specific heats gis a key parameter for compressible flows,
and must aso be specified before any of the isentropic density models can
be usad.

Constant Value

The user may either specify a constant value for g, or decide to use the
prescribed value for a given fluid (gas) from the Fluid Material Property
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Library. Note that if the Compressibility option has not been activated, g
can still be specified as a parameter from the | sentropic Gas Law Density
Model subpanedl.

Field Value

When the homogeneous gas phase is a mixture of various gaseous Species,
as in chemically reacting flows or multi-species, it is necessary to compute
an effective ratio of the specific heats for the homogeneous phase. The Field
Value option automatically computes this effective ratio as

N

Ipett = 2 %G 6

where X; and g are the mass fraction and the specific heat ratio for the i
Species, respectively.

General User-Defined Model
Theratio of specific heats may be defined as an arbitrary function as
g=f{f,xt) (62)

wheref isany scalar variable, x is the physical space variable, andtistime.

CFD2000 Materials Property Library

CFD2000 includes a built-in Material Property Library that contains a
database of the various thermophysical quantities needed in CFD modeling.
Table 2.4 below lists the fluids (gas and liquid) available in this library.
Note that for most of the gases, three different models are offered. These
correspond to the principal density models available in CFD2000—namely,
the constant density, the ideal gas, and the isentropic flow models.
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Table 2.4 Fluid materialsin the CFD2000

Material Property Library.

MATERIAL FORMULA STATE NL,%%?;T_ SO F

Air Mixture Gas 3
Ammonia NHj Gas 3
Argon Ar Gas 1
Butane C4H 1o Gsas 1
Carbon Dioxide CO, Gas 3
Carbon Monoxide (6{0) Gas 3
Engine Ol

(SAE 30, unused) - Liquid 1
Ethylene C,H, Gas 2
Ethylene Glycol C,Hg0, Liquid 1
Freon 12 CCl,F, Liquid 1
Glycerin C3HgO5 Liquid 1
Helium He Gas 3
Hydrogen H, Gas 3
Mercury Hg Liquid 1
Methane CH, Gas 3
Neon Ne Gas 3
Nitrogen N, Gas 3
Oxygen 0O, Gas 3
Seam H,0 Gas 2
Water H.0O Liquid 4
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TURBULENCE MODELING

Turbulence modeling in CFD2000 is performed using a two-equation k-e
model. This model solves transport equations for the turbulence kinetic
energy k, and the dissipation rate e. The turbulent shear stresses in the
Reynolds-averaged Navier-Stokes equations are then modeled using the
Boussinesq hypothesis with an appropriate relation for the eddy or turbulent
viscosity, based on the computed values of k and e.

The turbulent viscosity coefficient my plays a role similar to the laminar

viscosity in Storm, except that it controls the rate at which momentum is
redistributed due to turbulent eddy motions rather than by molecular
diffusion. Assuch, itisnot anintrinsic fluid property, but is rather a space-
and time-dependent quantity whose value depends entirely on the loca
turbulent characteristics of the flow.

k-e Turbulence Model

The k-e turbulence model is one of severa two-equation models that have
developed over the years. It is probably the most widely and thoroughly
tested of them all (Nallasamy, 1987). Based on simple dimensiona
arguments concerning the relationship between the size and the energetics
of individual eddies in fully developed, isotropic turbulence, the model
employs the following diagnostic equation for the turbulent viscosity
(Launder and Spalding, 1974)

C rk2
m. = me (63)

where C,isadimensionless model constant, r is the local fluid density, and

k and e are the specific turbulent kinetic energy (Sl units: m?/s?) and
turbulent kinetic energy dissipation rate (Sl units: m?/s?), respectively.
These quantities are in turn computed using a pair of auxiliary transport
equations of the form
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where C, and C, are additional dimensionless model constants; Pr, and Pr,
are the turbulent Prandtl numbers for kinetic energy and dissipation,
respectively; Sk,p and S,, are source terms for the kinetic energy and
turbulent dissipation; and

L
= Ve 2 T
gﬂx T ,&,ﬂxj ‘nx ‘nx 3§m|_ ‘nx ‘nx

(66)

is the turbulent production rate. Values for the various dimensionless
constants used in Eqs. 1-4 are given in Table 2.5 below.

Table 2.5 Dimensionless constants for Storm k-epsilon turbulence model.

Cm Cl 02 Prk Pre

009 14 192 10 13

These values are identical to those recommended by Launder et al., 1972,
based on an evaluation of severa plane turbulent free jet and mixing layer
simulations. As such, they represent a good “ consensus’ parameter set, and
can be assumed to provide a model accuracy in the range from about 10%
to 50%, depending on the flow (Launder and Morse, 1979).
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Despite the wide applicability of the k-e turbulence moddl, the user should
nevertheless be aware of its limits. In particular, it should be kept in mind
that all two-equation turbulence models—the k-e model included—are valid
only in situations where the assumed linear relationship between turbulent
shearing stresses and the resultant mean strain rate (as in Eq. 45, for
example) is appropriate (i.e., where the primary influence of the turbulent
mixing is a downgradient or diffusive momentum transport). Although this
is usualy the case for most turbulent flows, there are situations, especially
in highly complex flows involving asymmetric wakes, strong convection, or
combustion, where this assumption can break down locally and invalidate
the k- e approach (Nallasamy, 1987).

A second caveat stems from limitations inherent in the transport equations
used to predict k and e. Egs. 64 and 65 are in fact only strictly valid at high
Reynolds number—that is, for fully developed turbulence—and for
turbulence that is isotropic (independent of direction). As a result, the
Sorm k- e turbulence model cannot be expected to be equally applicable to
all flow regimes, and cannot in particular be expected to accurately simulate
the entire trandition from laminar to turbulent flow (e.g., immediately
adjacent to walls or other solid boundaries), or the turbulent mixing
characteristics of rapidly swirling or strongly stratified flows.

In turbulent flows, the ability of the fluid to transmit heat internaly is
enhanced somewhat due in part to the fact that turbulent eddies generaly
have length scales that are much larger than the molecular mean free path.
Consequently, whenever the Turbulent Flow option is activated, an
additional quantity known as the turbulent thermal conductivity x; is

defined for use in the thermodynamic energy equation. In Storm, xy is
defined relative to x according to the expression

Kk
IS
Py

k (67)

where Pry is the turbulent Prandtl number. By default, Storm assumes Pr
= 0.9 for al fluids independent of turbulent strength.
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General User-Defined Model

In addition to the standard k-epsilon model, CFD2000 offers the ability to
define a custom mode of the form,

m = f(f,x,t) (68)

where f is any scalar variable in Sorm, x is the spatial variable, and t is
time.
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Fluid flows through porous material are very common in industria
processes. The porous medium is categorized as isotropic if resistance to
the flow does not vary with the flow direction, and anisotropic if the flow
resistance depends on flow direction. Porous regions are also commonly
used to model flows in which geometry is otherwise too complicated to
resolve with a practical number of grids such asfiltered screens.

In Sorm, the momentum equation for flow through a porous medium has
the following form in the i-direction:

ﬂ(‘lztui)+N><(rVui)+gm+CrM N p+Roxm +rf (69)

& f”'

where k; is the _direction-dependent permeability of the porous medium and
C, is the nonlinear momentum loss coefficient in the i-direction. If C, and k;

are the same for al directions, the porous region is isotropic—otherwise, it
is anisotropic. If the transient, convection, diffusion, and body force terms
in Eq. 69 are dropped, the equation reduces to

CJL_|V| | (70)
1]

which is the anisotropic form of the Forcheimer-Brinkman model. If C= 0
and k; isisotropic, the result is Darcy’ s equation,

Nlp

% ["’3“"

- Rip= (71)

fﬂ%rfgb

U
i
i

Note that the off-diagona terms of the permeability tensor have been
assumed to be zero. Thus, the principal axes of the permeability tensor
should coincide with the grid directions.
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CHEMICALLY REACTING FLOWS

The coupling between chemica reactions and fluid flows in complex
geometries is of interest to users wishing to simulate gas turbine
combustors, chemical reactors, and power generation devices such as
internal  combustion engines and rocket propulsion systems. When
considering such a smulation, two factors should be considered:

= The speed of the reaction, and

» Thecharacteristic time scale of the flow itsalf.

Reacting flows are classified according to the relative magnitudes of these
time scales, and these analysis dictates which type of chemica reaction
model should be used. CFD2000 Version 3.0 features six different types of
chemical reaction models:

= A multi-step, finite-rate chemistry model

= A mixture fraction model

= Aninstantaneous chemistry model

= Anequilibrium moded

= A “frozen” reaction modd, and

= A chemical vapor deposition modd.

Brief descriptions of each of these models and their typical uses are given
below.

Finite Rate Chemistry Model

The CFD2000 finite rate chemistry model is the most generaly applicable
of the six choices offered under Version 3.0. It is particularly suited for
stuations in which the chemica reactions cannot be completed over the
duration of a single computational time step, or when the range of reaction
time scalesisvery large. 1n such situations, the time required for molecular
collisons within the flow must be taken into account, and reaction models
based on the theory of chemica kinetics must be developed.
Mathematically, this requires the solution of a set of conservation equations

49



Theoretical Background

50

which describe the transport of species within the fluid, coupled with source
terms derived from chemica kinetics models that describe the production
and destruction of species within the flow. These kinetic source term
models, however, cause the equations to become nonlinear and highly
“stiff”, necessitating the use of a specialized numerica treatment to solve
the species equations (Curtics and Hirschfelder, 1952).

CFD2000 uses an “operator splitting” solution technique (Rizzi and Bailey,
1965; Eklund et al., 1986; Chen et al., 1994) to solve the finite-rate species
conservation equations. This technique, which effectively overcomes much
of the difficulty introduced by the stiffness of the governing equations, splits
the solution at each discrete modd time interval into a two-step predictor-
corrector process. In the predictor phase, effective reaction rates, based on
an application of the law of mass action and the Arrhenius formula, are
computed for the current model time step. Using these effective rates, the
Species conservation equations are integrated one step forward in time
(using a fully implicit integration scheme) with the convection and diffusion
terms omitted. The result is a tentative prediction of the species
concentrations at the new time step. This prediction is then itself updated
(the corrector step) by integrating the conservation eguations once more, this
time with convection and diffusion included. Any heat released or absorbed
during the reactions is then added to the total flow energy, the time step is
advanced one increment, and the process repeats.

Your CFD2000 Version 3.0 installation includes a library of several pre-
defined finite rate reaction models. Asindicated in Table 2.6, most of these
reactions involve at least two “steps’ (individual reactions), and a few
require thirty or more. Required inputs for these models include, for each
reaction, the individual reaction equations, the reaction collision coefficient
A, the collision factor exponent n, the activation energy E, and the values of
any third body coefficients M. You can inspect the values of these inputs
for any of the predefined models directly from the CFD2000 interface, or by
referring to the reactl.lib text file included with your installation. Users
wishing to add their own finite rate models to the chemical reaction library
can do so by appending the relevant stoichiometric and kinetic data (in the
proper format) to this file, and by adding the appropriate thermodynamic



Property and Physical Models

data (heat capacities, enthalpies, Gibbs energies, etc.) to file specieslib.
Contact Adaptive Research for assistance.

Table 2.6. Finite rate Chemical Reaction Library models.

Number of-
REACTION
REACTION NAME STEPS SPECIES ELEMENTS
H,+ 02 2 4 2
H, + Air 2 5 3
H, + Air 7 7 3
H,+ 0O, 7 6 2
H, + Air 9 7 3
H,+ 0O, 9 6 2
H, + Air 32 13 3
C,H,4 + Air 10 10 4
CH,+ 0, 10 9 3
H, + Air 16 10 3
CH,+ 0, 45 15 3
Air Dissociation 32 12 2
Air Dissociation 11 7 2
CH,+ 0, 4 6 3
CH, +Air 4 7 4
CsHg+ O, 4 6 3
C3Hg + Air 4 7 4
Liquid C1oH 56 + Air 1 5 3
Liquid Cy3H 55 + Air 1 5 3
Rarefied Gas 10 9 4
SH,4+H, 2 4 2
S;+H, 20 24 2
NOx Formation 5 11 4
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Mixture Fraction Model

The CFD2000 mixture fraction modd is a speciaized mode intended
primarily for oxidation (e.g., combustion) simulations involving reactant
gases injected from one or more nozzles into a common domain. Its useis
limited to single-step reactions with finite (non-zero) rates that are
nevertheless fast enough to be completed within one model (fluid) time step.

The name “mixture fraction” stems from the fact that this moddl treats the
influx of gases at each inlet boundary as a mixture of two generic
components. (1) the reactant gas (or fuel), which itself may be composed of
amixture of several chemical species, and (2) the carrier gas (typicdly, air).
These components are assumed to enter the model domain completely
mixed, with the relative mass fraction of fuel to air crossing the inlet
boundary per unit time designated by the user-specified quantity F. Thus,
F—along with the mass flux Mdot (or velocity) and the temperature—
congtitutes an extra boundary condition that must be set for each inlet
whenever the mixture fraction model is used.

NOTE Inits ddivered configuration, CFD2000 Version 3.0 allows fuel to
enter the model domain through at most two inlets when using the mixture
fraction model. However, this restriction can be easily relaxed through the
use of user coding. Contact Adaptive Research for assistance.

Once the inlet boundary conditions have been set, the mixture fraction
model employs a two-step, predictor-corrector technique similar to that used
in the finite rate chemistry model, although the steps are applied in reverse
order. In the first step, the local concentration of fuel at each grid location
within the modd domain is determined by solving a single species
conservation equation for F with all sources and sinks set to zero. OnceFis
known, the local concentration of each species is calculated by referring to
the local density and the relative mass fractions of each component as
dictated by the reaction stoichiometry. This provisiona prediction is then
revised (corrected) by temporarily “freezing” the effects of convection and
diffusion and applying the reaction chemistry at each grid point. (Note,
however, that unlike the finite rate chemistry model, the mixture fraction
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model assumes that the reaction can be completed in its entirety within a
single time step.) Any heat released during the reaction is then added to the
total flow energy, the time step is advanced one increment, and the process
repeats.

Your CFD2000 ingtalation includes a built-in library of three mixture-
fraction, fuel-air reaction models (Table 2.7). As in the finite rate model,
each of these reactions is defined by the three Arrhenius coefficients A, n,
and E, as well as its case-specific reaction equations. Additions to this
model library can be made by appending your specific “fast chemistry”
reaction datato file react4.lib. Contact Adaptive Research for assistance.

Table 2.7. Mixture fraction, instantaneous, and equilibrium reaction

library models.
Number of ...
REACTION
REACTION NAME STEPS® SPECIES  ELEMENTS
H, + Air 1 5 3
CH, + Air 1 7 4
C3Hg + Air 1 7 4

@Mixture fraction and instantaneous models only.

Instantaneous Reaction Model

When the chemica reactions in the flow are so fast relative to the model
time step that the reaction time is effectively zero, the instantaneous
reaction model can be applied.

The instantaneous model is similar in many ways to the mixture fraction
model. Both are intended primarily for fast oxidation smulations, and both
require that the relative mass fraction of fuel to air at each inlet be
prescribed through a boundary condition F. However, unlike the mixture
fraction approach, the instantaneous model discards the kinetic source terms
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altogether and instead relies entirely upon the stoichiometric formula to
obtain the proper balance of fuel and reaction products. Such reactions are
always carried to completion (stoichiometric balance) at each grid point as
long as there is sufficient fuel present after the first (predictor) time step. If,
however, the reactant mass is not stoichiometric, then the reaction processis
limited by the exhaustion of the fuel species and the yidld is diminished
proportionally.

The CFD2000 chemical reaction library contains three built-in
instantaneous reaction models. These model reactions are the same ones
available in the mixture fraction modd library, and are based on identical
stoichiometry (Table 2.7). The only difference is that no kinetic (Arrhenius)
coefficients are provided in the input file react2.lib.

Equilibrium Chemistry Model

The equilibrium chemistry model can be used for reactions that are able to
proceed in both directions (i.e., reactant to product, or product to reactant),
and that are fast enough that they can be trested as effectively
instantaneous. Mixtures characterized by such reactions tend to maintain a
chemical equilibrium everywhere within the fluid based on a state of
minimized Gibbs free energy. As a result, the products of such reactions
can be determined solely by the thermodynamic state variables (for example,
temperature and pressure) of the system.

The CFD2000 equilibrium chemistry model computes, for each species and
at each grid point in the model domain, a chemical potential function based
on the loca temperature, pressure, and species concentration (determined
from the mixture fraction F). These potential functions are, in turn,
incorporated into a system of N nonlinear algebraic mass conservation
equations, where N is the number of individual atomic elements involved.
Assuming that the cumulative molar concentration of eements in the
mixture remains constant, these equations are then solved and a provisiona
estimate of the updated species concentrations is obtained. Loca
temperatures and effective gas constants are then recalculated, and the
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whole system is solved again. The process then repeats from the beginning
and continues until convergence is obtained.

Your chemical reaction library contains three built-in reactions based on the
equilibrium chemistry approach. These are the same three fuel-air reactions
found in both the mixture fraction and the instantaneous chemistry model
libraries (Table 2.7). User-supplied additions to the equilibrium chemistry
library can be appended to file react3.lib.

Frozen Reaction Model

The frozen reaction model is essentially a multi-species mixing modd in
which al reaction rates are artificialy set to infinity, effectively eliminating
(“freezing”) the chemica component of the fluid flow. This model can be
used to compute the concentrations of up to twenty individual components
within the model domain, as well as the effective (mass-weighted) heat
capacity and specific heat ratio of the bulk mixture. Required inputs are the
mass fluxes of each species at one or more inlets (a boundary condition),
plus the appropriate thermodynamic data for each species (included in
species.lib).

Chemical Vapor Deposition Model

Chemical vapor deposition (CVD) is a process in which chemical reactions
in a gas and on the surface of an adjacent solid substrate are used to induce
the growth of a thin, solid film directly onto the surface. Its most common
application is in the el ectronic component industry, where it used to form the
thin silicon wafers that comprise most semiconductor devices and integrated
circuits. But it is aso finding increased use as a generd technique for
creating high temperature ceramic coatings (Galasso, 1991).

Asimplemented in CFD2000, the chemical vapor deposition model contains
two distinct components. (1) a finiterate, multi-step, gaseous-phase
chemistry model, and (2) a surface reaction model. These models must be
specified individuadly by the user, and they must be compatible with each
other.
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Currently, CFD2000 includes just two gaseous phase reaction models
suitable for CVD, both of which are intended for smulations of silicon

deposition from a mixture of silane (SiH4) and molecular hydrogen. By
sdecting either of these models, CFD2000 automatically activates an
additional term in the species conservation equation that simulates the effect
of thermal-gradient driven mass diffusion (the Soret term). Kinetic and
stoichiometric data for both CVD reaction models is contained in the file
reactllib (the finite rate chemistry input file), and the Soret term is
modeled in the user-accessible Fortran file ucvddif f.

CFD2000 also contains a library of models for several types of surface
reactions, each of which can be classified as being either a catalytic or a
combustion type reaction (Table 2.8). In catalytic reactions, the solid
substrate acts only to induce (catalyze) the gas phase reaction and remains
chemicaly inert. (Such reactions are aso sometimes referred to as
adsorption reactions.) On the other hand, in combustion surface reactions,
the substrate actually participates in reaction itself, such as in the case
where an oxidizing gas passes over a solid fuel surface.

Table 2.8 Surface reaction library models.

Number of-
REACTION NAME TYPE RES‘_\FEESON SPECIES ELEMENTS
Copper + N, Catalytic 1 2 1
Copper + O, Catalytic 1 2 1
Copper + Air Catalytic 2 4 2
Carbon + O, Fast combustion 1 4 2
Carbon + O, Sow combustion 1 2 2
SH4deposition |  Catalytic (CVD) 2 4 2

In most CVD reactors, deposition is initiated by heating the substrate—
either by thermal conduction or by the dissipation of high frequency radio
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energy. Thus the types of surface reactions relevant for CVD modeling
clearly fal into the catalytic category. Currently, only one CVD surface
reaction moddl of this type is available from the CFD2000 reaction library.
This mode—a two-step, four-species, finite rate catalytic model—is
intended for use in simulations of Si deposition from silane gas. As such, it
serves as the appropriate complement to either of the two SiH4+H> finite-
rate, gaseous phase CVD models available from the library.

Input data for all CFD2000 surface reaction models is contained in file
react5.lib. This file contains, for each model, the appropriate kinetic and
stoichiometric data for each reaction. It also includes, for each of the two
steps involved in the CVD surface reaction model, a pair of additional
coefficients used to model the temperature-dependent sticking coefficient.
Users wishing to modify any of this data may do so by editing react5.lib or,
if an additiona surface reaction moded is desired, by appending the
appropriate data. Contact Adaptive Research for assistance.
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Two-phase flows in which discrete particles are dispersed in a continuous
fluid occur in many scientific and engineering applications. They are of
critical importance in fields such as rocket and turbojet propulsion, chemical
processing, and pollution control. Transfer of mass, momentum, and energy
between the continuous fluid and the particles plays an important role in
determining the characteristics of the flows.

Two-phase flow simulations use either an Eulerian or a Lagrangian
approach for modeling the particulate phase. The Eulerian approach treats
the particle phase as a second continuous fluid, and both phases
interpenetrate.  The Eulerian approach is appropriate for flows containing
very fine particles with diameters in the micron or sub-micron range (e.g.,
smoke or powder dust). It has relatively high computational efficiency,
especialy for monodispersed systems. The Lagrangian approach treats
particles as discrete entities interacting with a turbulent or laminar
continuous fluid flow and caculates their individual trgectories; the
Eulerian approach is appropriate for polydispersed particle sprays.
CFD2000 uses the Lagrangian approach.

The two-phase flow simulation in CFD2000 is a fully interactive
combination of Eulerian fluid and Lagrangian particle flow calculations.
Interactions between the continuous phase and the particulate phase are
complex. Ordinary differential equations describe the particle trajectories,
deriving their coefficients from the conditions in the fluid phase at the
particle locations. In continuous phase calculations, the influence of the
particles is transmitted through source terms added to the Navier-Stokes
equations. A global iterative process adjusts the continuous phase source
terms and the particle phase coefficients.

Table 2.9 on the facing page shows the allowable combinations of fluid and
particle material states. Particle size distributions can be specified, and
models for size distribution changes due to evaporation, breakup, or
collison and coalescence are provided.
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Table2.9 Material phase combinations.

CONTINUOUS PHASE PARTICULATE PHASE

Gas Liquid
Gas Solid
Liquid Gas

Liquid Liquid
Liquid Solid

Particle Phase

Particles enter the flow at particle injection inlets, which are designated
boundaries defined for the continuous flow domain. These boundaries may
be interior or exterior to the flow domain and may be of any type; they need
not correspond to fluid inlets.

A set of initid characteristics for particles entering the flow is associated
with each injection inlet. Particle characteristics are size, velocity,
temperature, and material phase and properties. At each injection inlet the
particles may have a specified uniform size, or individua sizes may be
assigned by sampling on a selected distribution function. Similarly, particle
initial velocities may be uniform or may be assigned by sampling on a
specified injection velocity profile.

After injection, the motion of each particle is calculated by solving the
Lagrangian equation of motion. Optionally, particle temperature may be
calculated by solving a heat transfer equation, or by assuming equilibrium
with the continuous phase loca temperature. Also optionaly, changes in
size for liquid particles may be caculated by applying models for
evaporation, breakup, or collision and coalescence.
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Particle Size Distributions

Most engineering multiphase flow applications have particles that are non-
uniform in size and shape. Complete descriptions of particle ensemble
geometric characteristics require a number of distribution functions. These
are obtained experimentally as spectra over discrete measurement bins and
are fitted with analytic functions having one or more correlation constants.
Specification of the distribution functions and their correlation constant
values are sufficient to describe the particle ensemble.

In particle tracking smulations, it is usua to describe the particle ensemble
by a single distribution function relating the number of particles to a
characteristic size. CFD2000 allows selection of either the Rosin-Rammler
distribution function or the ¢-Sguared distribution function. (Uniform and
user-defined particle size distributions are also available as additional
options.)

The Sauter Diameter, which is defined as the ratio of the particle volume to
the particle area, is commonly used as the characteristic size in engineering
applications. However, some published data refer to actua particle
diameter, and either of the two sizes may be specified in CFD2000. In
either case, the primary constant defining a specific particle ensemble is the
mean particle characteristic size. Thisisdefined as

¥
oDf (D)dD
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D= ¥
of (D)dD
0

(72)

where D is characteristic particle size, f(D) = dF(D)/dD and F(D) is the
cumulative number of particles in the distribution having sizes between zero
and D.

For a liquid particle, the Sauter Diameter is determined by particle
deformation and varies in accordance with forces acting on the particle.
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Rosin-Rammler Distribution

The Rosin-Rammler distribution function can be expressed in terms of the
cumulative fraction of total particle volume occupied by particles with sizes
between zero and D as

q-1 é .qu
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D isthe mean particle size for the distribution, and X and q are correlation

constants related to D through the function C. This volume distribution is
converted into a number distribution through
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c-Squared Distribution

The normalized number distribution function for the ¢-Squared distribution
5
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and the corresponding cumulative distribution function is
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Equation of Motion

The equation of motion for a particle in a fluid continuum with variable
velocity (Soo, 1967) is
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where the five terms on the right hand side in order are drag force, pressure
gradient force, virtua mass force, the “Basset” term for the effect of non-
uniform flow, and the gravity or other body force. Here d is the particle
diameter, rIO is the particle density, v; is the ith component of the particle
velocity, u; is the it" component of thefIU|d velocity, C, is the drag coeffic-
ient, p is the pressure in the continuous phase, t is the particle relaxation
time, and F; is the body force per unit mass on the particle.

Usuadly the drag and gravity forces dominate the particle motion, and the
approximate form of the equation of motion is
Yty . (79)
— =1 14 .
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where U, is the it component of fluid velocity, and uf is the fluctuating it"
component of the fluid velocity. Here t, the particle rdaxation time, is
defined by
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where M isthe particle radius, and the drag coefficient C, is calculated as
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where Re, is the particle Reynolds number, defined as
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The particle position x; is determined by integrating the equation of motion
to obtain the velocity v, then integrating the equation

—L =y, (83)

Particle Breakup Models

Sorm provides two particle breskup model options: the Taylor Analogy
Breakup (TAB) model and the Wave Instability breakup model.

TAB Model

The TAB mode (O’'Rourke and Amsden, 1987) is based on an analogy
between an oscillating and distorting liquid droplet and a spring-mass
system. The spring restoring force is analogous to the surface tension and
the externa force on the mass is analogous to the gas aerodynamic force.
Damping forces due to fluid viscosity are added to the analogy. A
deformation parameter y is defined as the displacement of the droplet
surface from its equilibrium position, divided by the equilibrium radius.
The equation for acceleration of the y parameter is

da?y_2r @ruey? B0 5T g (84)
a2 31 D r2 rord r o r2 dt
p pp pp
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where a is the liquid surface tension coefficient and mr, is the liquid
viscosity, both of which depend on the particle temperature Tp. Integration
of the above equation gives the time-dependent distortion

& * We ¢ u

® (o)
16 0)
y(t):\i\—/:+expé ti_?y(O)— \A—lzeCosM+—gy(0)+t—12—Snwtﬂ (85)
B = 1]
Pg g P % &
where
We:M is the Weber number,
a
of r2_ . o
t =<_PP istheviscous damping time, and
p 5 r‘r]
wl=8 as_iz is the square of the oscillation frequency.
roro t
pp p

The droplet oscillation and breakup computations require two normalized
particle arrays (y for deformation and dy/dt for oscillation). Droplet
breakup occurs if and only if deformation exceeds the particle equilibrium
radius (y(t)>1). Following breakup, the product drop has the same
temperature as the parent drop, and its deformation and oscillation
parameters are set to zero.
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Wave I nstability Model

This model is based on wave stability analyses of liquid particles (“blobs’)
giected from a nozzle (Reitz and Diwakar, 1986). The initial size of the
blobs is the nozzle diameter. From the wave dispersion equation for a round
jet, the wavelength of the fastest growing wave L and the maximum wave
growth rate W are calculated as

L gt 0.4529-%)1+0.40707) )
s @+0.87we-57)
and
L i
r- = .
w it 034+ 0.380e! 87)

éa B (1+2)(1+1.4706)

Here Z :Wep'5/Rep and T = e0'5.

The mean product droplet radius and breakup rate are given by:

}BO if BOL£rJ.
i€ 1/3 1/30
c = @20 TEAe Ty (88)
p -,-minét;—1+ G L. aif BL>r.
P 2w 4 . 0" j
i % 2 g 2 {
and
dr. r.-r
-1 P ,w (89)
dt 3.726Blrj
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Vaues for the modd constants By and B; in the initid nozzle atomization
process and the subsequent particle breakup process are shown in Table
2.10 on the next page.
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Table2.10 Model constants in wave instability model.

CONSTANT NOZZLE AUTOMIZATION SECONDARY DROPLET

PROCESS BREAKUP
B, 0.61 0.61
B, 10.0 173

Particle Collision and Coalescence

Sorm uses a particle collison model established by O'Rourke (1981) to
calculate the droplet collision and coaescence. Collisions are calculated for
particles with locations within a single computational cell in the continuous
flow domain. The particles associated with each parcel are assumed to be
uniformly distributed throughout the cell.

A collision frequency n between a parcel with radius r,; and another with

radiusr,, r;>r,, is
N 5
-_2 n,.n 3 90
% dVnp(r1+r2) ‘Vl vz‘ (90)

where N5 is the number of particles in parcel 2, (vl - vz) is the relative
velocity between parcels, and dV is the volume of the cell. The probability
P, for n collisions is assumed to obey the Poisson distribution

- =N

p = NN_ (91)
n n!

where 1 isthe mean value (n = vDt) and Dt is the time step. The number of
collisions, n, is determined by sampling on the Poisson distribution.

The collision impact parameters are calculated stochastically. If the collision
impact is less than a critical impact parameter, al n collisions are treated as
coalescence; if the impact is greater, al n collisions are treated as grazing
collisions. The critical impact parameter for a specific collison depends on
particle radii, relative velocities, and the surface tension coefficient. Grazing
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collisions, which usually occur between particles of nearly equal size, are
calculated between N pairs of particles, where

N = min(N{‘, Ng) (92)

Turbulence Modulation Model

Turbulence in the continuous phase is modified by the presence of the
particulate phase. This effect is represented in the continuous phase
simulations by the source terms S, ; and S, in the turbulent transport
equations for kinetic energy and dissipation, respectively. Shuen (1984)
obtained expressions for these source terms by using the momentum
equation with the source terms §,;, and &, ,representing particulate
phase effects on continuous phase momentum and turbulence fluctuation
velocity

S p=US, ,-U;S (93)
,p | ui,p | ui,p
and
qs¢
s oM 4P (94)

€, p X. X.
ﬂJ ﬂJ

where the turbulence fluctuation velocity u( has a Gaussian distribution.

The continuous phase momentum source term has the form

é X
&N . (v) -m N G1L T 1
13 pe,p I p pp t

where dV is the computational cell volume, NP is the total number of
particles, and N, is the number of particles for each computational parcel.
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The turbulence source terms are then

NP € - VflioLij
S, :iéeNmud(vtL)—mNugzlﬂ ©0)

P ,Tye P e T T T 2 a

e PO

and
e

S =1.0— 97
e.p =% %, p o7
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MOVING GRID

70

When the computational grid moves as a function of time, the grid velocity
enters the analysis and must be included in discretizing the governing
differential equations. Basicaly, the grid motion affects the convective
fluxes of mass, momentum, energy, and other scalar dependent variables. In
integral form, the continuity and the generalized transport equations can be
written as follows:

Continuity Equation

E(‘)rdv+(‘)r§§7-\7 Ya=0 (98)
dtV A Jo
General Transport Equation
E()rfdv+()rf§?—\7 Ha= &N dA+ 3dV (99)
dtV A Jg A v

where V is an arbitrary moving volume, A is the surface of V, f is any
scalar quantity, and GNf and S are the diffusive flux and source terms for
the corresponding variable.

In Storm, after you specify the characteristics of the grid motion, the mass
and other convective fluxes across the cell faces are calculated according to
the local fluid flow conditions and grid velocity. The cell volume, face area,
and face direction cosines are recalculated at every time step.
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CONJUGATE HEAT TRANSFER

In many flow problems, there are solid objects within the computational
domain. Though fluid cannot penetrate the solid-fluid interface, heat can be
transferred through the interface and conducted inside the solid objects. In
this circumstance, mass and momentum equations are solved in the fluid
side only, but the energy equation is applied to both the fluid and solid
regions. Because the solid-fluid interface requires attention to ensure
appropriate conservation of energy, conjugate heat transfer analysis was

developed.
Basically, at the solid-fluid interface the following two conditions need to be
met:
T T (100)
Fn| stn|
|
and
= 101
T, L Ts‘i (102)

where the subscripts f and s are for fluid and solid respectively, and
subscript i indicates interface. The two conditions state that the heat flux
and temperature across the fluid-solid interface are continuous. In general,
the fluid and solid objects have different specific heats C.s and C .

Therefore, enthalpy across the interface is not generally continuous.

Your CFD2000 installation contains a library of severa solid materials that
can be used in conjugate heat transfer analyses. For each of these materials
included in the Solid Material Property Library, three parameters are stored:
the solid density, the specific heat, and the thermal conductivity. Table 2.11
on the facing page lists al of the substances contained in the Solid Material
Property Library, as well as the default values for each of the three
parameters. As in the case with the Fluid Material Library, you may
modify any of thesevalues, or define and store your own material properties
in the library.
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Table 2.11 Solidsin CFD2000 Solid Material Property Library.?

DENSITY SPECIFIC HEAT CONDUCTIVITY
MATERIAL kg/m® JikgldegK Wim/degK

Aluminum (pure) 2.707x10° 897.2 203.
Apple 0.840x10° 3600. 0513
Advestos 0.577x10° 1050. 0.16
Banana 0.980x10° 3350. 0.481
Brass 8.522x10° 385. 104,
Brick (common) 1.600x10° 840. 0.69
Bronze 8.650x10° 343, 26.
Chromium 7.200x10° 451.4 93.7
Codl (anthracite) 1.300x10° 1260. 0.26
Concrete 2.240x10° 880. 1.13
Copper (pure) 8.954x10° 384.9 384,
Corkboard 0.160x10° 1700. 0.043
Glass-Pyrex 2.640x10° 800. 1.09
Glass-Window 2.483x10° 770. 1.09
Gold 18.880x10° 129.7 315.
lce (273 K) 0.913x10° 1930, 2.22
Iron (pure) 7.897x10° 450.2 714
Lead 11.373x10° 129.6 34.6
Nickel (pure) 8.906x10° 443.4 90.3
Paper 0.930x10° 2500. 0.13
Paraffin 0.900x10° 2890. 0.02
Plastic (Aarylic) 1.185x10° 1470. 0.21
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Table 2.11 Solids in CFD2000 Solid Material Property Library.2

DENSITY SPECIFIC HEAT CONDUCTIVITY
MATERIAL kg/m® JikgldegK Wim/degK

Plastic (PVC) 1.714x10° 1050. 0.092
Platinum 21.450x10° 132.6 716
Rock (Granite) 2.650x10° 824. 3.4x10-3
Rock (Shdle) 2.73x10° 753, 1.9x10-3
Rubber(hard, 273K)  1.200x10° 2000. 0.156
Sand 1.515x10° 800. 0.027
Silicon 2.330x10° 713.9 148,
Silver (pure) 10.524x10° 234.5 47.
Soil (coarse) 2.050x10° 1.84 0.52
Sanless Sted (AISI-34 7.910x10° 460. 13.8
Tin (pure) 7.304x10° 217.7 64.1
Wood (0ak) 0.820x10° 2400. 0.28
Wood (pine) 0.500x10° 2800. 0.17
Zinc (pure) 7.144x10° 388.6 111,

@ Sources:  Edwards et al., 1979; Chase et al., 1985; Weast, 1987: Ekert and
Drake, 1972; Meyers, 1971.
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RADIATION

CFD2000 uses a six-flux radiation model to simulate radiative heat transfer.
Basically, it solves the following transport equation in the i-direction:

é u
981 d b (102
i H

abT%- aR  forl- D

i
I
I
5 5 103
s =t 2% +ar? B+3R for2- D (103)
u . &2g | & 2gl
T Rk OrapT4- B+ 2s0R for3- D
P2 e 3%
. D w
with b as the Stefan-Boltzmann constant, which is 5.6696e-8 > 7
m“k

Due to the absorption of radiant energy, the above radiation fluxes result in
anet source for the energy eguation, which is

2aR - 2abT4Rj for1D
2a§hl +R 0. 4abT# for2D (104)
%]

2a@R +R. +R 9 6abT4for3D
8' J Rkﬂ
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SPECIAL TERMS

In genera, it is not necessary to solve the set of governing equations
specified by Egs. 1-4 in Chapter 1 in their entirety for al classes of flows.
Depending on the type of flow, some of these terms may be neglected. By
default, Sorm does not include some of the influences available as “ switch-
on models’ from the CFD2000 interface. These are listed and detailed
below.

Swirl Flow

In certain classes of axisymmetric flows, the swirl component of velocity
may have a non-zero velocity, though there are no gradients in the
circumferential direction. In these dtuations, the problem may till be
computed in two dimensions by solving the transport equations for the three
components of velocity for a 2-D, axisymmetric geometry. This can be
performed by activating the Swirl Flow option.

Compressibility

For most low-speed flows, the tendency (time) term in the continuity
equation has a negligible influence on the overall solution and by default,
Sorm does not include this term in the governing equations. However, in
the case of high speed (M>0.3), compressible flows, this is an important
contribution and hence needs to be included in the smulation. This
compressibility term can be explicitly activated from the CFD2000
Analysis Specifications panel for such flows.

Viscous Dissipation

In certain classes of flows, there is a source term in the energy equation due
to viscous stresses. By default this effect, called viscous dissipation is not
included in the energy. It has to be explicitly activated when viscous
dissipation effects are significant.

The Brinkman number, a non-dimensional parameter given by the product
of the Prandtl and Eckert numbers as
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nC ul
Br=—2P =PrEc (105)
k CpT

is used to determine whether the temperature rise due to dissipation is
significant. Qualitatively, the Brinkman number represents the ratio of
dissipation effects to fluid conduction effects; a Brinkman number of order
unity or larger means that viscous dissipation has to be included in the
simulation.

Pressure Work

The third term on the right-hand side of the energy equation (Eg. 4) is often
referred to as the Pressure Work term.  This is usualy a significant
influence in high-speed flows with large velocity gradients and hence is not
included in the energy equation in Storm by default. It can however be
activated when modeling, for example, compressible flows.

Transient Pressure term

For unsteady flow problems involving moving pressure waves, it is
important to include the effects of the unsteady pressure derivative in the
energy equation (the second term on the right-hand side of Eq. 4). Thisterm
is included in the energy equation in Storm whenever the Unsteady Flow
option is selected.

Body Forces

Body forces in CFD2000 refer to forces that act on the entire mass of the
fluid element such as gravity. CFD2000 alows for a number of options to
include body forces.

Constant

A constant force that acts on the fluid over the entire domain may be
specified with this option.
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Gravity

The Gravity option allows the user to specify the value of acceleration due
to gravity in the appropriate unit system to compute the effective body
force.

Buoyancy Forces
A body force of the form
F=A(r-B) (106)

where A and B are constants may be specified using the Buoyancy Force
option.

Boussinesg Model

A special extension of the constant density model is available whenever both
the heat transfer and gravity options have been activated. In this situation,
convective motions can arise even when the dendity variations are very
small. The user can account for this effect while till retaining most of the
advantages of the constant density model by choosing the Boussinesq force
option from the gravity boundary condition menu. When this option is
selected, dendity is treated as a constant in the dynamical equations—except
where it is coupled with the gravitational acceleration. Thus the body force
term in the momentum equation (Eg. 1) is cast in terms of a small
(linearized) density variation about the basic reference value

b. =g (107)

i irrefb?-_

5
Tref P
where g. is the component of the gravitational acceleration vector in the it
coordinate direction; r . and T, are the constant reference density and

temperature, respectively; and b is the isobaric thermal expansion
coefficient defined

_ 16 (108)
r (é‘lTpr
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Values for b have been assigned for every fluid in the CFD2000 Fluid
Material Library. For gases, Sorm usesthe idea gas relationship

b=1/T (109)

where T isin absolute degrees (either Kelvin or Rankine).
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SPECIAL CHARACTERS

b  Seethermal expansion coefficient

c-squared particle size distribution 61, 62

g Seeratio of specific heats

e Seegoverning equations, turbulent dissipation rate
k  Seethermal conductivity

m  See dynamic viscosity

A

absorption coefficient 73

activation energy (for chemica kinetics) 50, 54
ADI (linear equation solution method) 19, 21
aternating direction implicit  See ADI
Arrheniusformula 51, 54, 55

arithmetic mean (diffusion coefficient) 14
atomization  See particle breakup models
axi-symmetric geometry 74
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B

Basset term for particle motion 62
Bingham plastics  See non-Newtonian fluids, Bingham model
body-fitted coordinates (BFC) 8
body forces 3, 75-77
Boussinesg model  76-77
buoyancy 76
constant model 75
gravity 76
Boussinesg model 76
breskup models  See particle breakup models
Brinkman number  74-75

buoyancy force 76

C

Carreau model
See non-Newtonian fluid, Bingham model

Cartesian ooordinates  8-9

catalytic surfacereations 56

cell faces nomenclature 9
centered-differencing schemes  13-14, 16
ceramic coating process 55

CFL number 22

checkerboard instability 16

chemical kinetics  49-50

chemical potential function 54



Index

chemical reaction moddls  49-57
equilibrium  54-55
finiterate 49-51, 55-56
frozen 55
instantaneous  53-54
mixture fraction  52-53
surface  55-57
timescalesand 49

chemical vapor deposition  See CVD model
chemistry  See chemical reaction models

chi-squared particle size distribution
See c-squared particle size distribution

coalesence (particle)

See particle collision and coal escence models
collison frequency  66-67
collision (particle)

See particle collision and coal escence models
collision factor exponent, n (Arrhenius exponent) 50, 53
combustion modeling 52, 56
compressibleflow 28, 41-42, 74-75
conductivity — See thermal conductivity
conjugate heat transfer ~ See heat transfer, solid

conservation equations 2, 3-7, 8
See al'so governing equations

continuity equation 3
and compressibleflow 74

contravariant velocities 11-14, 16
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convectivefluxes 11-14, 22
hybrid scheme 12
first-order scheme 13
second-order scheme  13-14
third-order scheme 13-14

convectionterm 8, 10, 11-14
coordinate systems 89
conjugate heat transfer 70
control volumes  8-9
convergence, techniquesfor accelerating 24-25
Courant-Friedrichs-Lewy condition
See CFL number
CVD model  55-57

D

Darcy’sequation 48

density models
constant 27
customized 29-30
fiddvalue 28-29
ideal gaslaw 28
inverse function 29
linear function 29

solid  71-72

user-defined  29-30

virial 30
diffusion

and surface chemical reactions 57
coefficient 7, 14-15
thermal-gradient driven mass 56
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diffusion (cont.)
Soret 56
teem 8, 10, 14-15

diffusive fluxes
arithmeticmean 14
harmonic mean 15

diffusivity 5
dilitant flud 32, 33
direct method (linear equation solution method)

drag
coefficient 62-63
force 62

dynamic viscosity, m 3, 31-38
Bingham model 32, 35-36
Careau model 32, 34
customized models  37-38
inverse function modd 37
linear function model 37
Newtonian model 31, 32
non-Newtonian models 31, 32-36
power law model 32, 33-34
Sutherland model  37-38
user-defined model 37-38

E

Eckert number  74-75
energy equation
See thermodynamic energy equation

enthalpy
for multi-component fluid 4

20
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equation of motion for particles  63-64
equations of state 6, 27-30
equilibrium chemical reaction model  54-55
Eulerian particle tracking 58
expansion coefficient

See thermal expansion coefficient

F

finite rate chemistry model ~ 49-51, 55-56

first order scheme  See convective fluxes

Fluid Materia Property Library 43
Forcheimer-Brinkman moddl (for porous media) 48
frozen chemical reaction model 55

fud-air chemical reactions 52

G

“gamma’  Seeratio of specific heats
gasconstant 28, 29

general conservation equation 6-7, 10
Gibbsenergy 52,55

governing equations
energy 4
general conservation 6-7, 8, 10
mass conservation 3
massfraction 5
momentum conservation 3
particle motion 62
speciesmassfraction 5
state 6, 27-30
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turbulent dissipation rate, e 5-6, 44-45

governing equations (cont.)
turbulent kinetic energy, k  5-6, 44-45
turbulent production rate, G 6, 45

Green'stheorem 10
grids 9,16
moving 69

H

harmonic mean (diffusion coefficient) 15
heat capacity ~ See specific heat
heat transfer
solid  70-72
high-speed flow 74, 75
hybrid scheme  See convective fluxes

idea gaslaw 28

ILU (linear equation solution method) 19, 21
incomplete lower-upper factorization See ILU

incompressibleflow 27

instantaneous chemical reaction modd  53-54

interfacial fluxes 11-15
convective 11-14
diffusve 14-15

isentropic gaslaw 28, 41-42
isobaric expansion coefficient
See thermal expansion coefficient
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J, K

k-epsilon (k-e) turbulence model
See turbulence model

L

Lagrangian particletracking  58-68

libraries
equilibrium chemical reaction model  54-55
finite rate chemical reaction  49-51
fluid materials 43
instantaneous chemical reaction model  53-54
mixture fraction chemical reaction model  52-53
solid materials 71, 72
speciesdata 51, 55
surface reaction chemistry 56, 57

linear equation solvers  19-21

M

mass fraction
conservation equation 5
factor, F 52, 53,54

material properties

gases 43
liquids 43
solids  71-72

mixture fraction chemical reaction modd  52-53
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Index

momentum equation
for fluds 34
for particles  62-63

moving grids 69
multistep chemical reactions  50-51, 55

N

Newtonian fluids  30-31,32
non-Newtonian fluids 31, 32, 33-36
Binghammodel 32, 35
Careau model 32, 34
power law 32, 33-34

O]

operator splitting method
and finite rate chemistry model 50

Ostwald-de Waele viscosity model
See non-Newtonian fluid models, power law

P

particle breakup models  63-66

particle collison and coalesence models  66-67
particle phase modeling 59

particle size distributions  60-61

particletracking  See Lagrangian particle tracking
Peclet number 12

permeability 48

PISO solution algorithm ~ 17-18
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plastics, Bingham  See non-Newtonian fluids, Bingham model

Poisson equation 17,18

porous mediamodel 48

powder 58

Prandtl number
laminar  39-40, 74-75
turbulent  5-6, 46-47

predictor-corrector methods
finite rate chemical reaction model 50
instantaneous chemical reaction model 54
mixture fraction chemical reaction model 52
PISO agorithm  17-18, 21

pressure equation  17-18
solution methods 20

pressure-velocity collocation 16

pressurework 75

pseudoplastics 32, 33

QR

radiation model 74

ratio of specific heats, g (gamma) 28, 41-42, 55
asafieldvaue 42
for multi-component gas 55
user-defined model 42

reactllib 50, 56

react2.lib 54
react3.lib 55
reactd.lib 53
reactS.lib 57



Index

reaction collision coefficient, A (Arrhenius coefficient) 50, 53

reference values
density 28,76
pressure 28
temperature 28, 38, 76

Reynolds number, Re (for particles) 63
Rhie-Chow method 16
Rosin-Rammler particle sze distribution 61

S

Sauter diameter (for particles) 60
scattering coefficient 73

second-order scheme  See convective fluxes
semiconductor device manufacture 55
slane (SiH4) 55, 56, 57

SIMPLE algorithm 17

single step chemical reactions  52-54
six-flux radiation modd 73

smoke 58

Solid Materials Property Library  71-72
Soretterm 56

source
linearization 10
teem 7,8, 10

specia terms  74-77

Species conservation equation 5

specieslib 51,55

specificheat 38, 39
asafiedvalue 38,55
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multi-component gas 55
specific heat (cont.)

ratio  Seeratio of specific heat

solids  71-72

user-defined model 39

Steffan-Boltzmann coefficient 73
dticking coefficient 57

stiff systems of equations 50
Stoke hypothesis 4

Stokes dissipation 4
stresstensor 4, 30

strainrate 4, 30-35

surface reaction models  55-57
swirl flow 74

T

TAB model for particle breakup  63-64

thermal conductivity, k 4, 39-41
asafiddvalue 40
inverse function modd 41
linear function model 40
Prandtl number option  39-40
solid  71-72
turbulent, kt 46
user-defined modd 41

thermodynamic energy equation  4-5
and compressibleflow 74
and radiation 73

thermal expansion coefficient 41, 76-77
third-order scheme  See convective fluxes



Index

timeaccuracy 17-18, 24-25
time step
and diffuson 23
and flow speed 22
and grid size  22-23
time step options  23-25
and time-accurate solutions  24-25
automatic control  24-25
fixed 23
growth rate 24
local control 25
upper limit 24
time step factor 24
transentterm 8, 10
and compressibleflow 74, 75

turbulence model
applications 46
governing equations  6-7, 44-45
particle modulation  67-68
user-defined 47

turbulent conductivity — See thermal conductivity, turbulent
turbulent Prandtl number  See Prandtl number, turbulent
two-equation viscosity model

See non-Newtonian fluid models, power law
two-phase flow  See Langrangian particle tracking

U

ucvddif f
Unsteady Flow option 75
upwind schemes 13-14
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Vv

velocities, cell-face  See contravariant velocities
virial equation of state 30
viscous dissipation  74-75
viscosity
bulk 4
dynamic  See dynamic viscosity
Newtonian 30-31, 32
non-Newtonian 31, 32, 33-36
second 4
turbulent 44

VNN  See Von Neumann number
Von Neumann number 23

w

wave instability model (for particle breakup) 65
Weber number 65

XY, Z

yield stress 35



